
Journal of Applied Mathematics and Computational Mechanics 2016, 15(4), 83-92 

www.amcm.pcz.pl p-ISSN 2299-9965 

 DOI: 10.17512/jamcm.2016.4.09 e-ISSN 2353-0588 

FRACTIONAL HEAT CONDUCTION IN MULTILAYER 

SPHERICAL BODIES 

Stanisław Kukla, Urszula Siedlecka 

Institute of Mathematics, Czestochowa University of Technology 
Częstochowa, Poland 

stanislaw.kukla@im.pcz.pl, urszula.siedlecka@im.pcz.pl 
 

Received: 29 September 2016; accepted: 02 November 2016 

Abstract. In this paper an analytical solution of the time-fractional heat conduction prob-

lem in a spherical coordinate system is presented. The considerations deal the two- 

-dimensional problem in multilayer spherical bodies including a hollow sphere, hemisphere 

and spherical wedge. The mathematical Robin conditions are assumed. The solution is 

a sum of time-dependent function satisfied homogenous boundary conditions and of 

a solution of the steady-state problem. Numerical example shows the temperature distribu-

tions in the hemisphere for various order of time-derivative. 
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1. Introduction 

The heat conduction in multilayer bodies with assumption of the Fourier law 
of heat transfer has been considered by Özişik in book [1]. Derivations of 
the temperature distributions in the bodies in rectangular, cylindrical and spherical 
coordinate systems were presented. The heat conduction in layered spheres with 
time-dependent boundary conditions assuming spherical symmetry was the subject 
of paper [2]. A solution of the heat conduction problem for a two-dimensional 
multi-layered sphere, hemisphere, spherical cone and spherical wedge presents 
paper [3]. 

A generalization of the Fourier law leads to a fractional heat conduction equa-
tion. The fractional differential equation governing the heat equation includes 
the fractional derivatives with respect to time and/or space variables. Properties 
of the fractional derivatives and methods to the solution of the fractional differen-
tial equations are presented in books [4-6]. A method of solution of a time-frac-
tional heat conduction equation in a solid sphere has been discussed by Ning and 
Jiang in paper [7]. The time-fractional heat conduction in a multi-layered solid 
sphere assuming spherical symmetry was the subject of paper [8]. Heat conduction 
modelling using fractional order derivatives is presented by Žecová and J. Terpák 
in paper [9]. 
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In this paper, an analytical solution of the time-fractional heat conduction 
for two-dimensional multilayered spherical bodies is presented. The condition 
for ensuring the perfect contact at interfaces and the mathematical Robin boundary 
conditions at boundary surfaces are assumed. 

2. Formulation of the problem 

Consider n spherical concentric layers which are in perfect thermal contact. 
The i-th layer ( 1,...,=i n) occupied a region described by the spherical coordinates: 

1−
≤ ≤

i i
r r r , 0 ≤ ≤ϕ ϕ  (0 < ≤ϕ π ), 0 2≤ <φ π , where r  is the radial coordinate, 
ϕ  is the polar angle and φ  is the azimuthal angle (Fig. 1). 
 

 
Fig. 1. A schematic diagram of the n-layered hemisphere 

We suppose that the i-th layer is characterized by constant thermal conductivity 
i
λ  

and constant thermal diffusivity 
i
a . Moreover, assuming that the temperature 

doesn’t depend on the azimuthal angle, the time fractional heat conduction 
in the layers is governed by the following differential equation [10]: 
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where α  denotes fractional order of the Caputo derivative with respect to time t , 
0 1< ≤α . The Caputo derivative is defined by [11] 
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In order to simplify the equation (1) we introduce a new variable µ  which is 
related to the polar angle φ  by 

 cos=µ φ  (3) 



Fractional heat conduction in multilayer spherical bodies 85

Taking into account this relationship in equation (1) we obtain 

( ) ( ) ( ) ( )( )2 2

2 2

1 1 1
, , 1 , , , , ,

1,..., , 1

 ∂ ∂ ∂ ∂ ∂ 
+ − =  

∂ ∂ ∂ ∂ ∂   

= ≤ ≤

i i i

i

r T r t T r t T r t
r r ar r t

i n

α

α

ϕ

µ µ µ µ
µ µ

µ µ

  (4) 

where cos=
ϕ

µ ϕ . The differential equations (4) are complemented by boundary 

conditions and the conditions providing the perfect thermal contact of the neigh-
bouring layers. The mathematical conditions are [2, 10] 
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where ,

+ ∞
a a  are inner and outer heat transfer coefficients and ,

+ ∞
T T  are inner 

and outer ambient temperatures. The initial condition is assumed in the form 

 ( ) ( ), ,0 ,=
i i
T r F rµ µ  (10) 

3. Solution of the problem 

We search a solution to the problem (1), (4)-(10) in the form of a sum 

 ( ) ( ) ( ), , , , , , 1,2,...= + =
i i i
T r t r t Φ r i nµ θ µ µ   (11) 

where the function ( ), ,

i
r tθ µ  satisfies homogeneous fractional heat conduction 

differential equation and homogeneous boundary conditions and the function 
( ),

i
Φ r µ  is a solution of a steady-state problem. Substituting the solution (11) into 

equations (1), (4)-(10) we obtain the problems for the functions 
i
θ  and 

i
Φ . For 

i
θ  

we have 
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The functions ( ),

i
Φ r µ  satisfy the following boundary problem 
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3.1. Solution to the homogeneous problem 

We find the time dependent function 
i
θ  as a solution of the problem (12)-(18), 

by using the separation of variables method. Substituting the product of functions 

 ( ) ( ) ( ) ( ), , =
i i
r t R r Ψ tθ µ µ Λ  (25) 

into equation (12), we obtain three differential equations 
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where =
i

i
a

γ
ω , γ  and ν  are separation constants. 

Solution of the equation (26) 

Assuming that ( )1= +ν β β , the general solution of equation (26) can be 
written in the form 

 ( ) ( ) ( )1 2
= +Ψ AP A Qβ βµ µ µ  (29) 

where ( )Pβ µ  and ( )Qβ µ  are the Legendre functions of order β . Because 

( )
1

lim
→

= ∞Qβ
µ

µ , we assume 
2

0=A . Taking into account that 

 ( ) ( )1
=Ψ A Pβµ µ  (30) 

and substituting function ( ), ,

i
r tθ µ  in the form (25) into equation (15), we obtain 

an eigenvalue equation 

 ( ) 0=Pβ ϕµ    or   ( ) ( )1
0

+
− =P Pϕ β ϕ β ϕµ µ µ  (31) 

Solving equation (31a) or (31b), we obtain a sequence of roots ( )
1,2,...=

m
m

β . 

The functions ( )
m

Pβ µ  corresponding to the values of 
m

β  create an orthogonal 

system of functions, i.e. the functions satisfy the orthogonality condition 
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Solution of the equation (27) 

The general solution of equation (27) has the form 

 ( ) ( ) ( )1 2
, 1,2,...,= + =

m m
im i im i im

R r B j r B y r i nβ βω ω  (33) 

where 
m

jβ  and 
m

yβ  are spherical Bessel functions of the first and second kind, 

respectively. Substituting function ( )im
R r  into equation (25) and next, the ob-

tained function ( ), ,

im
r tθ µ  into conditions (13)-(14) and (16)-(17), the system of 

2n  homogeneous equations is received. We rewrite the equation system in the ma-
trix form 

 ⋅ =A B 0  (34) 
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1 , 2≤ ≤
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T

n n
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The non-zero solutions of equation (34) exist for these values of γ  for which 
the determinant of the matrix A  disappears, i.e. 

 det = 0A  (35) 

Solving this equation for 
m

β , the sequences of ( )
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i i
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(33) are determined by solving equation (34). The functions ( )ikm
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to the values of 
km

γ  satisfy the orthogonality condition 
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Solution of the equation (28) 

Based on the orthogonality conditions (32), (36) and using (25) in the condition 
(18), we find the initial condition for the function 

km
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The solution of the fractional differential equation (28) satisfying the initial condi-
tion (37) has the form 
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 is Mittag-Leffler function [12]. 

Ultimately, using (25), (30), (33) and (38), we have 
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where ( )km
tΛ  is given by equation (38). 

3.2. Solution to the steady-state problem 

We seek a solution of the problem (19)-(24) in the form of a series 
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where 
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β  are roots of the equation (31a) or (31b). Substituting the function ( ),
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into equation (19) we obtain an Euler differential equation 
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Next, taking into account function (40) in equations (20)-(21) and (23)-(24) and 
using the orthogonality condition (32), the boundary conditions for the functions 
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rϕ  are obtained 
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The general solution of the Euler equation (41) has the form 

 ( ) 1

1 2

− −
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m m

im i i
r C r C r

β β
ϕ   (46) 

Substitution (46) in conditions (42)-(45) gives 2n  linear non-homogeneous 
equations which can be written in the matrix form 

 ⋅ =D C F  (47) 
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1 , 2≤ ≤
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i j n

d , [ ]11 12 1 2
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n n
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The equation (47) is than solved with respect to unknown C . The determined coef-
ficients 

11 12 1 2
, , ..., ,

n n
C C C C  are then used in equation (46). Thus, the function 

( ),

i
rΦ µ  as a solution of the steady-state problem is given by equation (40) where 

the functions ( )im
rϕ  are defined by equation (46). 

Finally, the temperature distribution in the spherical layers received on the basis 
of the fractional heat conduction model is given by equation (11), (39) and (40). 

4. Numerical example  

We use the solution of the heat conduction problem derived in Section 3 to 
numerical calculations of the temperature distribution in a layered hemisphere 
( 0=

ϕ
µ ). We assume that zero temperature is established at the surface 0=µ , 

i.e. the boundary conditions (15a) and (22a), are satisfied. The considered hemi-
sphere consists of five concentric layers whose locations are determined by 
non-dimensional radii: 

0
=

i i
r r r , where 

0
1.0 m=r . The non-dimensional radii 

i
r , 

thermal conductivity 
i
λ  and thermal diffusivity 

i
a  in the i-th layer of the sphere 

are: 1.02; 1.04; 1.06; 1.1; 1.2=
i
r , ( )16.0; 24.0; 36.0; 54.0; 81.0= ⋅

i
λ W m K , 

6 6 5 5 5 2 α
3.3 10 ; 6.0 10 ; 1.1 10 ; 2.0 10 ; 4.0 10 m s

− − − − −

= ⋅ ⋅ ⋅ ⋅ ⋅
i
a , i = 1,…,5. The inner 

and outer heat transfer coefficients are: ( )2
1200 W m K

+ ∞
= = ⋅a a , 

the inner and outer ambient temperatures are: o o

100.0 C, 20 C
+ ∞
= =T T  and the 

initial temperature is assumed as constant: ( ) o

, 20 C=
i

F r µ . The computations 

were performed for various values of the order of fractional time-derivative: 
0.5; 0.6; 0.7; 0.8; 0.9; 1.0=α . The temperature distributions on the surfaces of 

the layers determined for [ ]0,1∈µ , are shown in Figures 2a-d. The temperature 

depends on the order α  of the time-derivative occurring in the heat conduction 
model. This dependence is more significant for higher temperature of the sphere. 
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Fig. 2. The non-dimensional temperatures at outer surface and at interfaces of the layered 

hemisphere: a) 1.2=r , b) 1.1=r , c) 1.06=r , d) 1.02=r  

5. Conclusions 

An analytical solution of the problem of time-fractional heat conduction in 
two-dimensional multi-layer spherical bodies has been presented. The formulation 
of the problem includes the heat conduction in the spherical bodies which occupied 
regions defined by finite intervals of the radial coordinate and polar angle. 
The conditions to perfect contact at interfaces and the mathematical Robin bounda-
ry conditions were assumed. The derived solution applies to the bodies consisting 
of an arbitrary number of layers which are characterized by different thermal 
conductivity and thermal diffusivity. The numerical example shows that the order 
of fractional time-derivative is of significant importance for temperature distribu-
tion in the body. The temperature at the outer surface and at interfaces of 
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the layered hemisphere is lower order of the fractional time-derivative. The further 
research will take into consideration the fractional heat conduction in spherical 
multilayer bodies with time-dependent boundary conditions. 
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