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Abstract. The Cattaneo-Vernotte (CVE) equation is considered. This equation belongs to 

the group of hyperbolic PDE. Supplementing this equation by two additional terms corre-

sponding to perfusion and metabolic heat sources one can apply the CVE as a mathematical 

model describing the heat transfer processes proceeding in domain of the soft tissue. Such 

an approach is recently often preferred substituting the classical Pennes model. At the stage 

of numerical computations the different numerical methods of the PDE solving can be used. 

In this paper the problems of stability conditions for the explicit scheme of the finite 

difference method (FDM) are discussed. The appropriate condition limiting the admissible 

time step have been found using the von Neumann analysis. 
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1. Introduction 

Bioheat transfer processes proceeding in the domain of soft tissue are, as a rule, 

described using the well known Pennes equation [1-4] being a certain modification 

of the Fourier parabolic equation. As is well known the mathematical form of this 

equation, results from the assumption of the infinite velocity of thermal wave prop-

agation. In the case of materials with a specific internal structure (e.g. biological 

tissue), the Fourier equation should be modified. To take into account the delay 

effect of the local and temporary heat flux with respect to the temperature gradient, 

the so-called relaxation time τq is introduced, and then the Cattaneo-Vernotte 

equation should be considered [5, 6]. According to literature, the relaxation time for 

the processed meat is the order of seconds (2÷5 s) [6, 7]. As mentioned, the bioheat 

transfer equation (the tissue model) contains two additional terms determining 
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the perfusion and metabolic heat sources. The first is proportional to the local 

differences between blood and tissue temperatures. The second term (in this paper) 

is treated as a constant value. It should be pointed out, that the mathematical form 

of perfusion heat source results from the assumption that the tissue is supplied 

by the large number of blood capillaries uniformly distributed in the area under 

consideration. To take into account the presence of thermally significant vessels 

of considerable size the so-called vessels models are considered but these problems 

will not be discussed here. 

The primary goal of this paper is to establish the stability conditions for 

the Cattaneo-Vernotte bioheat transfer equation (in the case when at the stage 

of numerical modeling, the explicit scheme of the finite difference method 

is used). The FDM equations are constructed in the version proposed in [8], while 

at the same time the 2D problem for domains oriented in the Cartesian co-ordinate 

system is considered. 

2. The FDM equations 

We consider the following energy equation 
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where c is the volumetric specific heat of  tissue, λ  is the  thermal conductivity, Q 

is the capacity of internal heat sources, τq is the relaxation time, T is the tempera-

ture, x, y, t denote the geometrical co-ordinates and time. 

Additionally 

 ( ) ( ), , , ,=  −  + B B B met
Q x y t G c T T x y t Q  (2) 

where GB [m
3
 blood/m

3
 tissue/s] is the perfusion coefficient, cB is the volumetric 

specific heat of blood, TB is the arterial blood temperature, Qmet is the metabolic 

heat source (treated here as a constant value). 

So, in the case of bio-heat problems the CVE is of the form 
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The equation (2) is supplemented by the appropriate boundary and initial condi-

tions. It should be pointed out that the form of typical boundary conditions 
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in the case of CVE is somewhat different than the classic ones. For example, 

the Neumann condition takes a form 
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One can see, that for the constant value of the boundary heat flux the condition 

(4) takes a well known form. The initial conditions determine the initial tissue tem-

perature and initial cooling (heating) rate. 

The numerical solution of the problem discussed can be obtained using the explicit 
 

scheme of the FDM. Let us consider the 2D differential mesh being the Cartesian 

product 
,

Ω ⊗Ω
h k t

 of the geometrical mesh 
,

Ω
h k

 (Fig. 1) and temporal one 
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t t t t t t . Both the geometric h, k and time ∆t mesh steps 

are assumed to be the constant values. 

 

 

Fig. 1. Rectangular mesh 

Below, the FDM equation for the internal nodes  will be presented. To simplify 

the mathematical notation the local numbering of nodes is introduced, in particular 

the nodes (i, j), (i, j +1), (i, j–1), (i+1, j), (i–1, j) are denoted as 0, 1, 2, 3 and 4. 

The FDM approximation of the Cattaneo-Vernotte equation can be taken 

in the following form 
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In the case of rectangular differental mesh 
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while 
1

,

−

Φ
s

e e
R  are the mesh shape functions and the thermal resistances between 

the neighboring nodes. 

The equation (5) can be transformed as follows 
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and finally 
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Let us denote 
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and then 
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3. Stability condition 

The problem of numerical schemes stability is closely associated with a numeri-

cal error. The FDM scheme  is stable when the errors made at one time step of the 

calculation do not cause the errors to increase as the computations are continued 

[9]. If, on the contrary, the errors grow with time the numerical scheme is said to 

be unstable. The stability of numerical schemes can be investigated by performing 

von Neumann stability analysis. According to this theory, the approximation error 

carried by θs
e
 at every node of space (i, j) = (e) and time s is assumed to have 

a wave form with the wave numbers denoted by w1, w2 and the amplitude by δ: 
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s s

e e e
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As time progresses, to assure convergence, the amplitude of an approximation error 

must be less than unity, i.e. θ 1<
s

e
 [8-10]. 

Let us introduce the formula (14) into the FDM equation (13) 
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One can see, that for the rectagular mesh and the constant value of thermal conduc- 

tivity 
1 2 3 4

and .= = = =
x y

A A A A A A  

Additionally the source term can be neglected, because it has no effect on 

the FDM equation stability. So 
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Dividing by δ
s-2 

one obtains 
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or using the Euler formulas 
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Denoting 
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one obtains the equation 
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According to [9] the absolute values of the roots of equation (20) will be less than 1 

when 
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So, the first inequality takes a form 
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From the last inequality one obtains 
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or 
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This inequality is unconditional and does not limit the time step. 

Let us consider the second inequality, this means: 
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The left hand side of (25) can be trasformed in the following way 
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From the view point of FDM equation stability the most ‘safe’ variant of the last 

inequality corresponds to ( ) ( )2 2

1 2
sin / 2 sin / 2 1= =w h w k and then 
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For the constant value of thermal conductivity (see (6)) one obtains 

 ( ) ( ) ( )
2 2

2 2

λ λ
0 4 2 τ 4τ

 
< ∆ + ∆ + < ∆ + + 

 
B B q B B qG c t t t c G c c

h k
 (28) 

but the transition from (27) to (28) is very tedious. 

The final form of CVE stability condition is the following 
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In the case of non-linear tasks the stability condition can be also found. 

Then  each FDM star for transition 1−
→

s s

t t  must be considered individually and 

the critical time step correspods to the lowest value, of course. 
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