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Abstract. In this study, a finite volume method (FVM) is suitably used for solving the 

problem of a fully coupled fluid flow in a rectangular domain with slip boundary condi-

tions. Numerical solutions for the flow variables, viz. velocity, and pressure have been 

computed. The FVM, with an upwind scheme, has been implemented to discretize the gov-

erning equations of the present problem. The well known SIMPLE algorithm is employed 

for pressure-velocity coupling. This was executed with the aid of a computer program  

developed and run in a C-compiler. Computations have been performed for unknown varia-

bles with Reynolds numbers (Re) = 50, 100, 250, 500, 750 and 1000. The behavior of 

steady-state solutions of velocity and pressure of the fluid along horizontal and vertical 

through geometric center of the rectangular domain have been illustrated. We observed 

that, with the increase of the Reynolds number, the absolute value of velocity components 

decreases whereas the pressure value increases. 
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1. Introduction  

The problem of steady incompressible fluid flow has been the subject of inten-

sive numerical computations in recent years due to its significant applications in 

many scientific and engineering practices. Fluid flows play an important role in  

various equipment and processes. The steady 2-D incompressible viscous flow is 

a complex problem of great practical significance. The study of fluid flow has  

received considerable attention because of numerous engineering applications in 

various disciplines, such as storage of radioactive nuclear waste materials, transfer 
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ground water pollution, oil recovery processes, food processing, and the dispersion 

of chemical contaminants in various processes in the chemical industry. The Finite 

Volume Method (FVM) is a method for representing and evaluating partial diffe-

rential equations in the form of algebraic equations [1, 2]. The wall slip boundary 

conditions is appropriate for a problem that involves free boundaries, flows past 

chemically reacting walls, and other examples where the usual no-slip condition is 

not valid.  

Bozeman and Dalton [3] obtained numerical solutions for the steady 2-D flow 

of a viscous incompressible fluid in rectangular cavities. Ghia et al. [4] have used 

multigrid method to determine high-resolutions for 2-D incompressible Navier- 

-Stokes equations. Bruneau and Jouron [5] solved steady incompressible Navier- 

-Stokes equations in a two-dimensional driven cavity by an efficient scheme. Man-

sour and Hamed [6] investigated implicit solution of the incompressible Navier- 

-Stokes equations on non-staggered grid. Spotz [7] investigated the accuracy and  

performance of numerical wall boundary conditions for steady 2-D incompressible 

streamfunction vorticity. Boivin et al. [8] have proposed a finite volume method to 

solve the Navier-Stokes equations for incompressible viscous flows. Kalita et al. 

[9] have developed a fully compact computation of steady-state natural convection 

in a square cavity. Liakos [10] proposed a two-level method of discretizing the 

non-linear N-S equations with slip boundary condition. Piller and Stalio [11] deve-

loped and tested high-resolution finite volume scheme on staggered grid. Oztop 

and Dagtekin [12] investigated numerically the steady 2-D mixed convection pro-

blem in a vertical two-sided lid-driven differentially heated square cavity. Erturk et 

al. [13] have presented the numerical solutions of the 2-D steady incompressible 

driven cavity flow at high Reynolds numbers. Young et al. [14] have proposed 

a numerical scheme based on the method of fundamental solutions for the solution 

of 2-D and 3-D Stokes equations. Droniou and Eymard [15] presented a new finite 

volume scheme for anisotropic diffusion problems on unstructured irregular grids. 

Salem [16] investigated the numerical solution of the incompressible Navier- 

-Stokes equations in primitive variables, using grid generation techniques. Mencin-

ger and Zun [17] presented the finite volume discretization of discontinuous body 

forced field on collocated grid. Bharti et al. [18] have studied forced convection 

heat transfer from an unconfined circular cylinder in steady cross-flow regime 

using finite volume method. Hokpunna and Manhart [19] presented a compact  

fourth-order finite volume method for numerical solutions of the Navier-Stokes 

equations on staggered grids. Sathiyamoorthy and Chamkha [20] presented nume-

rical analysis of natural convective flow of electrically conducting liquid gallium in  

a square cavity. 

The literature survey viz-a-viz steady 2-D incompressible flow in a rectangular 

domain with wall slip boundary conditions revealed that to obtain highly accurate 

and efficient numerical solutions of the flow, we need to depend on special  

methods like strongly-implicit procedure, strongly-implicit multigrid method and 
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two-level method. All these methods fall under the category of finite difference 

methods (FDM). However, if we implement even more high order accurate and 

high resolution numerical methods like second order and fourth order compact fi-

nite volume methods (FVM) for the present problem, the numerical solutions ob-

tained by these methods have been high order accurate compared to the compact 

FDM in case of 2-D steady and unsteady flows. 

Although in most of the illustrated development viz-a-viz steady 2-D incom-

pressible flow they have tried to develop new schemes under the category of finite 

difference method (FDM) which are not as highly accurate as FVM, which is used 

in the present work to find out the numerical solutions of the 2-D steady incom-

pressible flow in a rectangular region. In most of the work cited above, they have 

used streamfunction-vorticity formulation as the method which is not as highly ac-

curate as finite volume method with SIMPLE algorithm. In these works, much em-

phasis was not given on the remedy as to how to solve the problem involving very 

complex Navier-Stokes equations with slip wall boundary conditions which is not 

discussed by the earlier researchers to the best of our knowledge. 

Our main target of this work is to suitably use the finite volume method for 

solving the problem of a fully coupled fluid flow in a rectangular domain with wall 

slip boundary conditions. The upwind scheme has been employed to discretize the 

Navier-Stokes equations. The SIMPLE algorithm has been used for pressure-

velocity coupling to find out the numerical solutions of flow variables for different 

Reynolds numbers. 

Pressure plays a significant role in predicting the behavior of steady fluid flows. 

The survey of literature revealed that researchers, until the early 90, are used to 

eliminate the pressure gradient term in momentum equations. We, therefore, have 

considered this physical problem from the view point of obtaining numerical solu-

tions of the fully coupled fluid flow in a rectangular domain with wall slip bounda-

ry conditions. 

2. Problem formulation 

2.1. Physical description 

The geometry of the problem in the paper, along with the boundary conditions, 

is drawn in Figure 1. ABCD is a rectangular domain about the point (1, 0.5) in 

which a steady 2-D incompressible viscous flow is considered. Flow is set up in 

a rectangular domain with three stationary walls and a top lid that moves to the 

right with constant speed (u = 2). 

At all four corner point velocities (u, v) vanish. It may be noted here regarding 

specifying the boundary conditions for pressure, the convention followed is that  

either the pressure at the boundary is given or the velocity component normal to the 

boundary is specified. 
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Fig. 1. The rectangular domain 

2.2. Governing equations 

In the present investigation, a steady 2-D incompressible fluid flow in a rectan-

gular domain with wall slip boundary conditions has been considered. The govern-

ing equations (1)-(3) subject to the boundary conditions (4) are solved using finite 

volume method. The details of 4 the geometry for the configurations considered are 

shown in Figure 1. Taking usual Boussniesq approximations into account, the gov-

erning equations of the problem in dimensionless form 

can be written as 
 

Continuity equation                              

 

0
∂ ∂

+ =
∂ ∂

u v

x y
                                          (1) 

x-momentum equation      
2 2

2 2

1u u P u u
u v

x y x Re x y

 ∂ ∂ ∂ ∂ ∂ 
+ = − + +  ∂ ∂ ∂ ∂ ∂  

        (2) 

y-momentum equation      
2 2

2 2

1v v P v v
u v

x y y Re x y

 ∂ ∂ ∂ ∂ ∂ 
+ = − + +  ∂ ∂ ∂ ∂ ∂                     (3) 

 

Boundary conditions 
 

on boundary AB: 0 0,u , v= =  on boundary BC: 0 0u , v= =         (4) 

on boundary CD: 0 0,u , v= =  on boundary DA: 2 0u , v= =  

3. Numerical method 

A finite difference method (FMD) discretization is based upon the differentiable 

form of the PDE to be solved. The depended variables are stored at the nodes only. 

The FDM is easiest to understand when the geometry is regularly shaped. A finite 

element method (FEM) discretization is based upon a piecewise representation of 

the solution in terms of specified basis functions. The dependent variables are 

stored at finite elements nodes. The method is a mathematical approach that is dif-

ficult to put any physical significance on the terms in the algebraic equations. 
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A Finite Volume Method (FVM) discretization is based upon an integral form of 

the PDE to be solved. The dependent variables are stored at the centre of the vol-

ume. The basic advantage of FVM is it does not require the use of structured grids. 

It is always better to use governing equation in conservative form with finite vol-

ume approach to solve any problem which ensures conservation of all the proper-

ties in each cells. 

The numerical method that has been adopted for the problem under study is the 

finite volume method (FVM) based on a uniform staggered grid system. In a stag-

gered grid [21] as shown in Figure 2, the scalar variables, including pressure, are 

stored at the nodes marked ( )• . The velocities are defined at the (scalar) cell faces 

in between the nodes and are indicated by arrows. Horizontal ( )→  arrows indicate 

the locations for u-velocities and the vertical ( )↑  ones denote those for  

v-velocity. In addition to the E, W, N, S notation, the u-velocities are stored at sca-

lar cell faces e and w and the v-velocities face n and s. We observe that the finite  

volumes for u and v are different from the scalar finite volumes and from each  

other. The scalar finite volumes are sometimes referred to as the pressure finite 

volumes because, the discrtized continuity equation is turned into a pressure cor-

rection equation, which is evaluated on scalar finite volumes. 

 

 

Fig. 2. Staggered grid  

Expressed in the new co-ordinate system, the discretized u-momentum equation 

for the velocity at the location (i , J)  is given by 

 , , 1, , ,( ) .
i J i J nb nb I J I J i J
a u a u P P A

−

= ∑ + −   (5) 

where Ai,J  is the (east or west) cell face area of the u-finite volume. In the number-

ing system  the W, E, S and N neighbors involved in the summation ∑anbunb are  

(i-1, J), (i+1, J), (i, J-1) and (i, J+1). Their locations and the prevailing velocities 
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are shown in Figure 3. The coefficients for the upwind differencing scheme are as 

follows: 

, 1, 1, , 1 , 1

1, 1, 1, 1, , ,

, 1 , , , 1 , 1 , 1

, 1, , 1 ,

,

[ , 0 ], [ , 0 ],

[ , 0 ], [ , 0 ],

( ) ( ).

i J i J i J i J i J

i J I J I J i J I J I J

i J i j i j i J i j i j

I J I J i j i j

a a a a a F

a D m ax F a D m ax F

a D m ax F a D m ax F

F F F F F

+ − + −

− − − +

− + + +

− +

= + + + + ∆ 


= + = + − 


= + = + − 
∆ = − + − 

 

(6) 

 

Fig.  3. A u-finite volume and its neighboring velocity components 

The coefficients contain combinations of the convective mass flux F and the 

diffusive conductance D at u-finite volume cell faces. Applying the new notation 

system we give the values of F and D for each of the faces e, w, n and s of the  

u-finite volume.                                  
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+ +   
= = = = =   

∆ ∆ ∆ ∆    


+ +    = = = = = =    ∆ ∆ ∆ ∆    

 (7) 

By analogy the v-momentum equation becomes

  

, , , 1 , ,( ) .I j I j nb nb I J I J I ja v a v P P A
−

= ∑ + −    (8)  

where Ai,J  is the (east or west) cell face area of the v-finite volume.  In the number-

ing system  the W, E, S and N neighbors involved in the summation ∑anbvnb are 

(I+1, j), (I-1, J), (I, j-1) and  (I, j+1). Their locations and the prevailing velocities 
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are shown in Figure 4. The coefficients for the upwind differencing scheme are as 

follows: 

  

, 1, 1, , 1 , 1

1, 1, 1, 1, , ,

, 1 , , , 1 , 1 , 1

, 1, , 1 ,

,

[ ,0], [ ,0],
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( ) ( ).
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F F F F F

+ − + −

− − − +

− + + +

− +

= + + + + ∆ 


= + = + − 


= + = + − 
∆ = − + − 

  (9)   

 

Fig. 4. A v-finite volume and its neighboring velocity components 

The coefficients contain combinations of the convective mass flux F and the 

diffusive conductance D at v-finite volume cell faces. Applying the new notation 

system, we give the values of F and D for each of the faces e, w, n and s of the  

v-finite volume. 
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Fig. 5. Scalar finite volume (continuity equation)
 

The pressure correction equation is given by 

 
' ' ' ' ' '

, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 , .I J I J I J I J I J I J I J I J I J I J I J
a P a P a P a P a P b

+ + − − + + − −
= + + + +  (11) 

where:      

 

, 1, 1, , 1 , 1

1, 1, 1, , , 1 , 1 , ,

,,

, ,

, ,

'

, , 1, , , 1

,

( ) , ( ) , ( ) , ( ) ,

, ,

( ) ( ) ( ) ( ) .

I J I J I J I J I J

I J i J I J i J I J I j I J I j

I ji J

i J I j

i J I j

I J i J i J I j I j

a a a a a

a dA a dA a dA a dA

AA
d d

a a

b u A u A v A v A

+ − + −

+ + − + +

∗ ∗ ∗ ∗

+ +

= + + + 


= = = = 

= = 

= − + − 

 (12)  

Equation (11) represents the discretized continuity equation as an equation for 

pressure correctionP′ . The source term b' in the equation is the continuity imbal-

ance arising from the incorrect velocity field. 

4. Numerical computations 

The acronym SIMPLE stands for Semi-Implicit Method for Pressure-Linked 

Equations. The algorithm is originally put forward by Patankar and Spalding [22] 

and essentially a guess-and-correct procedure for the calculation of pressure on  

a staggered grid arrangement introduced above. The algorithm gives a method of 

calculating pressure and velocities. The method is iterative, and when other scalars 

are coupled to the momentum equations the calculation needs to be done sequen-

tially. The discretized momentum equation and pressure correction equation are 

solved implicitly, where the velocity correction is solved explicitly. This is the rea-

son why it is called Semi-Implicit Method. The algorithm involves an iterative pro-

cess in which the pressure correction equation is susceptible to divergence unless 
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some under-relaxation is used. We have used a suitable under-relaxation factor to 

fluid out the converged values of pressure and velocities. 

5. Results and discussion 

In order to get clear insight into the problem, the numerical computations of     

u-velocity, v-velocity, the pressure for the Reynolds number by the method  

described under Section 3 has been done based on an algorithm given under  

Section 4. 
 

    

        Fig. 6. u-velocity along the vertical line                   Fig. 7. v-velocity along the horizontal line     
    through the geometric center of the domain                through the geometric center of the domain 

Figure 6 illustrates the behavior of u-velocity along the vertical line, through the 

geometric centre of the rectangular domain. We observed that, for a given Re,  

u-velocity first decreases from the bottom boundary (u = 0) and reaches its starting 

value (u = 0) at around the midpoint of the rectangular domain. It then increases 

from the midpoint to the upper boundary (u = 2). We also observed that the abso-

lute value of u-velocity decreases with an increase in the Reynolds number. Figure 

7 illustrates the behavior of v-velocity along the horizontal line, through the geo-

metric centre of the rectangular domain. It is evident that, for a given Re, v-velocity 

first increases from the left boundary (v = 0) to the midpoint of the rectangular do-

main. Then, it decreases from the midpoint to the right boundary (v = 0). Further, 

the absolute value of v-velocity decreases with an increase in the Reynolds number. 

The origins for these graphs for various values of Reynolds numbers (Re) have 

been displaced for clarity of the profiles. The thinning of the wall boundary layers 

with an increase in Re is evident from these profiles. The near-linearity of these  

velocity profiles in the central core of the rectangular domain can also be observed. 

Figure 8 illustrates the variation of pressure, at different grid points {(x, y) =  

= (0.0556, 0.5), (0.5, 0.5), (1.0556, 0.5), (1.5, 0.5), (1.9444, 0.5)}, for different Re. 

Figure 9 illustrates the variation of pressure, at different grid points {(x, y) = (1.0, 

0.0278), (1.0, 0.2500), (1.0, 0.5278), (1.0, 0.7500), (1.0, 0.9722)}, for different Re. 
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We observe that, the pressure increases with the increase of Re, tabulated at given 

grid points. 

 

       

 Fig. 8. Pressure variation for different Re                    Fig. 9. Pressure variation for different Re  
at (y = 0.5)                                                                       at (x = 1.0) 

5. Conclusions 

The problem of a steady 2-D incompressible viscous flow in a rectangular do-

main with wall slip boundary conditions has been investigated. A finite volume 

method, with upwind scheme, has been employed as numerical scheme to solve the 

governing equations of this problem. The well known SIMPLE algorithm is  

employed for velocity and pressure coupling. The numerical computations for 

these flow variables have been obtained with the help of a code in C-programming 

language. Using numerical simulations, we have illustrated the variation of  

u-velocity along the vertical line, and v-velocity along the horizontal line through 

the geometric centre of the rectangular domain, at different Reynolds numbers  

(Re = 50, 100, 250, 500, 750, 1000). We observed that, the absolute value of veloc-

ity decreases with an increase in Reynolds number (Re). We have listed out the 

numerical solutions for pressure, at different Re, along the horizontal and vertical 

lines through geometric center of the domain respectively. We observed that, pres-

sure increases with the increase of Reynolds number, tabulated at given grid points.  
 

Nomenclature 
x, y  co-ordinates

                                                                              

 

,x y∆ ∆   grid spacing along x and y-axes 

u,v  horizontal and vertical component of the velocity 

,u v
∗ ∗

  initial guess for horizontal and vertical component of the velocity 

P dimensionless pressure   

P
∗

  
initial guess for dimensionless pressure 

'
P

  
pressure correction 



Numerical solutions of a steady 2-D incompressible flow in a rectangular domain … 

 

15

, , ,

w e s n
F F F F

 
convective flux per unit mass at west, east, south and north face 

respectively 

, , ,

w e s n
D D D D

 
diffusivity conductance at west, east, south and north face respec-

tively 

Subscript 

 

i,  j  index used in tensor notation 

nb neighboring coordinate 

e   finite volume face P and E 

w  finite volume face P and W 

n  finite volume face P and N 

s finite volume face P and S 
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