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Abstract. A fixed-point algorithm is presented for a class of singly constrained nonlinear 

programming (NLP) problems with bounds. Setting the gradient of the Lagrangian equal to 

zero yields a set of optimality conditions. However, a direct solution on general problems 

may yield non-KKT points. Under the assumption that the gradient of the objective func-

tion is negative while the gradient of the constraint function is positive, and that the varia-

bles are positive, it is shown that the fixed-point iterations can converge to a KKT point. An 

active set strategy is used to handle lower and upper bounds. While fixed-point iteration  

algorithms can be found in the structural optimization literature, these are presented without 

clearly stating assumptions under which convergence may be achieved. They are also prob-

lem specific as opposed to working with general functions f, g. Here, the algorithm targets 

general functions which satisfy the stated assumptions. Further, within this general context, 

the fixed-point variable update formula is given physical significance. Unlike NLP descent 

methods, no line search is involved to determine step size which involves many function 

calls or simulations. Thus, the resulting algorithm is vastly superior for the subclass of 

problems considered. Moreover, the number of function evaluations remains independent 

of the number of variables allowing the efficient solution of problems with a large number 

of variables. Applications and numerical examples are presented. 
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1. Introduction 

A fixed-point algorithm is presented for a class of singly constrained NLP prob-

lems with bounds. Setting the gradient of the Lagrangian equal to zero yields a set 

of optimality conditions. However, a direct solution may yield non-KKT points. 

Under the assumption that the gradient of the objective function is negative while 

the gradient of the constraint function is positive, and that the variables are posi-
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tive, it is shown that the fixed-point iteration can be made to converge to a KKT 

point. Opposite signs on the derivatives, viz. a positive objective function gradient 

with a negative constraint function gradient can be handled via inverse variables. 

An active set strategy is used to handle lower and upper bounds. While fixed-point 

iteration algorithms can be found in the structural optimization literature [1-8], 

these are presented without clearly stating assumptions under which convergence 

may be achieved, and in fact, have been observed to not converge in certain situa-

tions without an explanation [5]. On the other hand, these algorithms have built-in 

bells and whistles relating to step size control and Lagrange multiplier updates that 

render them efficient on a wider variety of problems than targeted herein. Here, the 

algorithm targets general functions f and g within a subspace of functions, as op-

posed to problem specific applications in structural optimization. Further, within 

this general context, the fixed-point variable update formula is given physical sig-

nificance. 

For the subclass of problems considered, the algorithm presented is vastly supe-

rior to descent based NLP methods such as sequential quadratic programming or  

a generalized reduced gradient or feasible directions. In the latter category of 

methods, a line search needs to be performed along a search direction, which is 

computationally expensive as it involves multiple simulations in order to evaluate 

the functions. Further, in fixed-point iterative methods, the number of function 

evaluations involved in reaching the optimum are very weakly dependent on the 

number of variables [7], allowing an efficient solution of problems with a large 

number of variables. Fixed-point iterations have been applied extensively in the  

area of equation solving and in market equilibrium in economics while hardly at all 

in nonlinear programming. The algorithm may be applied to a subclass of problems 

in resource allocation and inventory models, in addition to allocation of material in 

structures  [9, 10]. 

2. Fixed-point iteration recurrence formulas 

Fixed-point iterations have been used widely in equation solving. Two recur-

rence formulas that are prevalent will be illustrated in finding the root of a one  

variable equation, x = g(x). This will pave the discussion of fixed-point iterations 

for solving optimization problems in the next section. Convergence is established 

by the following theorem [11, 12]: 

 

Theorem 2.1. Assume α is a solution of x = g(x) and suppose that g(x) is con-

tinuously differentiable in some neighboring interval about α  with ( ) 1g α′ < , 

where 
dg

g
dx

′ ≡ . Then, provided the starting point x
0
 is chosen sufficiently close to 

α,  x
k+1

 = g(x
k
), k ≥ 0, with k

k

Limit x α
→∞

= . 
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When x
0
 is sufficiently close, there exists an interval  I containing α where  

g(I) ⊂ I, i.e. g is a contraction on the interval. For systems of equations with n vari-

ables, the above holds true with α and x being vectors and the condition that all 

eigenvalues of the Jacobian ( ) ( )
j

i

g

x

∂ 
=  

∂ 
G α α are less than one in magnitude [12]. 

Two recurrence formulas are now discussed with the help of an example. Consider 

the solution of  x = 10cosx. Rather than generating a sequence as x
k+1
 = 10cos (x

k
) 

which is unstable, we use one of two techniques. Treating 10cos (x
k
) as the ‘new 

guess’ and x
k
 as the current value, we write 

 x
k+1
 = w g(x

k
) + (1−w) x

k
    (1) 

   = 10 w cos (x
k
) + (1−w) x

k    
 

where w = ½ represents an average of the two. The recurrence relation in Eq. (1) 

converges to the root 1.4276 provided w ≤ 1/11 for a sufficiently close starting 

guess, using the theorem above. Generally, w ∈(0,1) and is reduced if the iterations 

oscillate. If convergence is stable but slow, then w may be increased. w = 0.25 has 

been taken as the default value for the examples in this paper. 

Alternatively, we may multiply both sides of  x = 10cosx  by 1−p
x  and take the 

pth root, to obtain the recurrence relation 

 
( )( )

1/
1

1
( )

p
p

k k k
x x g x

−
+

=

 (2) 

 ( )( )
1/

1

10 cos( )
p

p
k k
x x

−

=  

which, for this example, converges for p ≥ 6 provided the starting guess is close 

enough. Formulas in Eqs. (1) or (2) will be used for optimization problems as di-

scussed subsequently. 

3. Assumptions and algorithm 

Assumptions made, algorithm development, procedural steps, extensions and 

physical interpretation of the fixed-point scheme are discussed in this section. 

3.1. Assumptions  

The subclass of NLP problems considered here are of the form 

minimize f (x) 

 subject to g(x) ≤ 0  (single constraint) and  x ≥ x
L
 > 0 (3)  
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where x
L
 are lower bounds. Descent based methods like sequential quadratic pro-

gramming and others referred to above update variables as 

 x
k+1
 = x

k
 + βk d

k
 (4) 

where βk is a step size chosen to ensure reduction of a descent or merit function, d
k
 

is a direction vector and k is an iteration index. In fixed-point methods, on the other 

hand, iterations are based on the form 

 x
k+1
 = φ (x

k
) (5) 

where 
n

+
∈Rx . Three assumptions are made:  

Assumption 3.1. All functions are C
1
 continuous, i.e. continuously differentiable. 

Assumption 3.2.  ni
x

f

i

,...,1,0
)(

=≤
∂

∂ x

, and ni
x

g

i

,...,1,0
)(

=>
∂

∂ x

.  

Assumption 3.3. 
n

R
+
∈x . That is, variables are real and positive. 

Generally speaking, assumption 3.2 above restricts the class of problems  

considered to those where increasing the available resource reduces the objective 

function value. For instance, more material reduces deflection (but not necessarily 

stress), or greater effort increases the probability of finding the treasure or target. 

Problems where 
( )

0
r

f

x

∂
≥

∂

x

, and 
( )

0
j

r

g

x

∂
<

∂

x

 for some r can be handled by working 

with reciprocal variable 
1

r

r

y
x
= . 

3.2. Development of the fixed-point algorithm 

Optimality conditions reduce to minimizing the Lagrangian L = f + µ g subject 

to the lower bounds on  xj.  For xj > xj
L
 then we solve the optimality condition  

0

j j

f g

x x
µ

∂ ∂
+ =

∂ ∂
 

The main issue to obtaining a minimum point is ensuring µ ≥ 0. Here, our  

assumptions on the signs of the derivatives (i.e. opposite monotonicity of the func-

tions) guarantee, from the optimality condition above, that µ ≥ 0. With lower 

bounds, the same result is true since 0

j j

f g

x x
µ

∂ ∂
+ ≥

∂ ∂
at points where xj = xj

L
 which 

again requires µ ≥ 0. Further, it readily follows that the single constraint is active 

(or essential) at optimum, since increasing variable xj will reduce the objective 
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while increasing the constraint value until it reaches its limit. Thus, with the stated 

assumptions, the solution of (3) using optimality conditions yields a KKT point. 

The fixed-point iteration is derived as follows. The constraint g(x) ≤ 0 is linear-

ized as c
T
x ≤ c0, where 0

1

0, ( )
n

k k

j i

ij i

g g
c c g x

x x
=

∂ ∂
= > = − +
∂ ∂

∑x  with the derivatives 

evaluated at the current point x
k
. Working with the linearized constraint, the local 

optimization problem may be stated as {min. f (x) : c
T
x ≤ c0, x ≥ x

L
}. We define  

a Lagrangian function  L = f + µ (c
T
 x − c0), and an active set 

{ }: , 1
L

i i
I i x x i n= = ≤ ≤ . The optimal point x is obtainable from 

L

arg min ( , )L µ
≥

∈

x x

x x . The optimality conditions can be stated as  

 

 

for , , 0

for , , 0

L

j j

j

L

j j j

j j

L
j I x x

x

L f
j I x x c

x x
µ

∂
∈ = ≥

∂

∂ ∂
∉ > = + =

∂ ∂

     (6) 

From Eq. (6) we have 

j ∈ I :  xj = xj
L
 

j ∉ I :  
1 L

max ,

j

jk

j j j j

f
x

x
c x c x

µ

+

∂ 
− ∂ 

=  
 
  

 (7) 

Substituting Eq. (7) into c
T
 x = c0 gives an expression for µ, which when substi-

tuted back into Eq. (7) gives   

j ∈ I :  xj = xj
L
 

j ∉ I :  
1 L L

0

r I

max ( ) ,
k

j j j r r j jc x E c c x c x
+

∈

  
= − 

  
∑  (8) 

where 

 

1

j

j

j n

i

i i
i I

f
x

x
E

f
x

x=

∉

 ∂
−  ∂ =
 ∂
− 
∂ 

∑

 (9) 
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A starting point x
0
 > x

L
 is used which may be feasible or infeasible with respect 

to the constraint. We use the fixed-point recurrence relation or ‘re-sizing’ formula: 

 j ∈ I :  xj = xj
L
 

 j ∉ I : 
L L

0

r I

max ( ) ,
j j r r j j

c y E c c x c x
∈

  
= − 

  
∑   (10) 

As per Eq. (1), we use for j ∉ I 

 
1

(1 )
k k

j jx w y w x
+

= + −  ,  w ∈(0,1) (11a) 

Or as per Eq. (2) we use for j ∉ I 

 
( )( )

1/
1

1

p
p

k k
x x y

−
+

=

 (11b) 

Basic steps are given in the algorithm below. 

3.3. Algorithm steps 

Input Data:  

x
0
, x

L
, w (or p), gmax, move limit max

∆ , Iteration limit, tolabs, tolrel  

Set initial active set I0 = {null set}  

Typical Iteration: 

i. Evaluate derivatives ,

j j

f g

x x

∂ ∂

∂ ∂
and then evaluate c, c0, Ej. 

ii. Compute xtrial ≡ xk+1
 from Eq. (11a) or (11b). 

iii. Reset xk+1
 to satisfy move limits based on  

max

trial k k

j j jx x x− ≤ ∆  as well as to 

satisfy the bounds. 

iv. Based on xk+1
, update active set from Ik to Ik+1. A free variable that has reached 

a bound is included in the active set based on whether 
1

maxL
1

k

j

j

x
g

x

+

− ≥ −  for 

each 
k

j I∉ . Also, variables in Ik are tested if they should become free. 

v. Stopping criteria is based on (i) iteration limit (= number of function calls), (ii) 
based on whether  

1 1k k rel k abs
f f tol f tol

− −

− ≤ +
  and  

max
( )kg g≤x  

which should hold for, say, 5 consecutive iterations. 
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3.4. Extensions of the algorithm 

The aforementioned fixed-point algorithm can be applied to problems which are 

extensions to problem (3) as discussed below.  

If the objective is to minimize  f  where 0, 1,...,
i

f
i n

x

∂
≥ =

∂
, subject to  

g(x) ≤ 0 where 0, 1,...,
i

g
i n

x

∂
< =

∂
, then we define reciprocal variables yi = 1/xi,  

i = 1,...,n. Defining  f (x) → f (1/y) ≡ f 
new
(y) and similarly g

new
(y), we obtain the 

problem:  

 minimize f 
new
(y) 

subject to  g
new
(y) ≤ 0, and y > 0  

The switch in the signs of the derivatives allows the algorithm to be applied. For 

example, the algorithm can be applied to minimize the compliance subject to  

a mass limit, or to minimize the mass subject to a compliance limit with reciprocal 

variables. 

Upper bounds are present in some problems. In topology optimization, for  

example, the bounds 0 ≤ xi ≤ 1 are imposed on the pseudo densities. The observa-

tion made in Section 4 is generalized, viz. 
L U

L U

0

r J r J

( )
r r r r

c c x c x

∈ ∈

− −∑ ∑  now repre-

sents the available resource after accounting for variables at their bounds. If a vari-

able xi ≡ θ represents an angle and crosses zero as 0 2θ π≤ ≤ , it can be substituted 

by 2 4π θ π≤ ≤ . 

3.5. Physical interpretation of variable update formula 

Importantly, the fixed-point iteration variable update in Eq. (10) can be physi-

cally interpreted as follows. Firstly, the derivative 
0

lim
jx

j j

f f

x x∆ →

∂ ∆
=

∂ ∆
 has often been 

termed a ‘sensitivity coefficient’ since it represents, to within a linear approxima-

tion, the change in f due to a unit change in xj. Similarly, the term 

0

lim
j

j
x

jj

j

f f
x

xx
x

∆ →

∂ ∆
=

∆∂
 represents the change in f due to a unit percentage change in 

xj within a linear approximation. Thus, as x → x
*
, the contribution of the jth term 

(cj xj) in the constraint 

c1 x1 + c2 x2 + ... + ( cj xj ) + ... + cn xn = c0 

(12)
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is ‘strengthened’ or ‘trimmed’ based on the relative impact or ‘relative return on 

investment’ the variable has on the objective. In structural optimization, this update 

is referred to as a ‘re-sizing’ since {xj} refer to member sizes. Here, the contribu-

tion to the literature is that a physical interpretation has been provided with general 

functions f and g, as opposed to specific functions pertaining to structural optimiza-

tion applications. Alternatively, dividing through by c0, we may interpret this as 

splitting unity into different parts, each part reflecting the impact on the objective. 

Lastly L

0

r J

( )
r r

c c x

∈

−∑  represents the available resource after accounting for varia-

bles at their bounds. Thus, the variable updates for xj only compete for the resource 

that is available. The resizing of variables can thus be expressed as “re-allocate 

term (ci xi) = (fractional % reduction in objective) x (available resource)”. Interest-

ingly, the term 
j

j

f
x

x

∂

∂
has only the units of  f  and is independent of the units of xj. 

Also, the iterations are driven by sensitivity only whereas in NLP based descent 

methods, the function  f  is also monitored during the line search phase. 

4. Applications 

4.1. Searching for a missing vessel 

Consider the problem of searching for a lost object where it is to be determined 

how resource b, measured in time units, must be spent to find, with the largest pro-

bability, an object among n subdivisions of the area [9]: 

1

n

i 1

,

maximize  (1 )

subject to   ,

, 0,

j j

n
b x

j

j

i

n

j j

a e

x b

a b b R

−

=

=

+

−

=

> ∈

∑

∑

x

 

Defining 
1

(1 )j j

n
b x

j

j

f a e
−

=

=− −∑  for minimization, we have / 0
j jb x

j j jdf dx a b e
−

= − < , 

and derivative of the constraint function g ≤ 0 is 1. Further, variables are positive. 

The fixed-point algorithm can thus be applied. 

4.2. Optimum allocation in stratified sampling 

Consider the problem determining an average of a certain quantity among  

a large population M. The population is stratified into n strata each having a popu-
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lation Mj with the number of samples chosen xj. The total sample is to be allocated 

to the strata to obtain a minimum variance of the global estimate [9]: 

2

2

1

n

i 1

( )
minimize  

( 1)

subject to   ,

1, 1, ,

n
j j j

j

j j j

i

j

M x

M x

x b

x j n

σ

ω

=

=

−

−

=

≥ =

∑

∑

…

 

where 
j

j

M

M
ω = ,  σ 

2
 is an appropriate estimate of the variance .in each strata, b is 

the total sample size. We have 
2 2

/ ( 1) 0
j j j j j

df dx M Mω σ= − − <  and derivative of 

the constraint function g ≤ 0 is 1. Further, variables are positive. The fixed-point 

algorithm can thus be applied. 

4.3. Structural optimization for minimum compliance 

The problem of allocating material within a structural domain to minimize 

compliance (i.e. maximize stiffness) satisfies the assumption 
( )

0
i

f

x

∂
≤

∂

x

 

 required 

to use the fixed-point algorithm. Specifically,  f (x) = F
T
U, with K(x) U = F. Here, 

K = global stiffness, U = global displacement, F = global force, and x represents 

either a cross-sectional area or element density. Using the adjoint method [13], it 

can be shown that if element stiffness matrix 
r

i
x∝k with the parameter r > 0, then 

i

i i

f
r

x x

ε∂
= −

∂
 where εi = q

T
kq is the element strain energy. Note that  q = the ele-

ment displacement vector and k = the element stiffness matrix. Since εi ≥ 0 owing 

to k being positive semi-definite, we have 0

i

f

x

∂
≤

∂
. Further, the assumption 

0

i

g

x

∂
>

∂
 readily follows when g represents the total volume of material. Further, in 

view of i

i i

f
r

x x

ε∂
= −

∂
, the fraction Ej in (9) takes the form 

 

1

j

j n

i

i
i I

E
ε

ε

=

∉

=

∑

 (13) 



A.D. Belegundu 38 

That is, variable update or re-sizing is governed by the energy in the jth element 

as a fraction of the total energy. Thus, many references exist in structural optimiza-

tion to energy based optimality criteria methods, which are shown here as special 

cases stemming from a general formula. 

4.4. Real time allocation of resources 

In view of the assumptions behind this algorithm, it can be expected to be useful 

in allocating fixed amount of resources relating to security. This follows from the 

assumption that more security than needed in certain areas will not be harmful. 

Similarly, allocating fixed amount of funds to school districts is a possible applica-

tion. Since the algorithm is fast, a dynamic allocation is possible based on say  

30-day moving averages of the data. These applications need to be explored. 

5. Numerical examples 

Examples are presented to show that the algorithm is far superior to a general 

nonlinear programming method for problems that satisfy Assumptions 3.1 and 3.2. 

The fixed-point algorithm is compared to MATLAB’s constrained optimizers  

(sequential quadratic programming and interior point optimizers under ‘fmincon’). 

5.1. Cantilever beam 

Consider the simple problem of allocating material to minimize the tip deflec-

tion of a cantilever beam with two length segments, with certain assumed problem 

data: 

minimize 
2 2

1 2

32 1
f

x x
= +  

subject to 2 x1 + x2 ≤ 1 

 x > 0 

From Eq. (9), 
( ) ( )

2 2

1 2

1 22 2 2 2

1 2 1 2

64 / 2 /
,

64 / 2 / 64 / 2 /

x x
E E

x x x x

= =

+ +

. The recurrence 

formula in Eq. (11a) becomes 

 
1 0 (1 )k k

j j j

j

c
x w E w x

c

+

= + −   
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where {ci} = [2  1],  c0 = 1. The optimum is x
*
 = [0.426, 0.169]. Based on Theorem 

2.1, it can be readily shown that the fixed-point iteration converges for w ∈(0,1). 

5.2. Searching for a missing vessel 

Table 1  

Searching for a missing vessel 

N NFE1 as per 

Fixed-point algorithm2 

NFE as per 

NLP algorithm2 

f *_fixed-point, 

f *_NLP 

10 37 209 ‒2.338, ‒2.339 

100 67 4.041 ‒5.733, ‒5.750 

1003 93 20,0213 ‒9.378, ‒9.240 

1 NFE = Number of Function Evaluations  

2 max. constraint violation = 0.001, max NFE = 100, in fixed-point code 
3 NLP took 19 iterations, and 20,021 function calls 

5.3. Randomized test problem 

A set of randomized test problems of the form: 

minimize f (x) = 
0

0

0

1 1

i j

t n
a

i j

j

C x

= =

∑ ∏  

subject to g1 (x) ≡ 
1

1

1 1

k

i j

t n
a

i j

i j

C x

= =

∑ ∏  ≤ 1  

 0 < x
L
 ≤ x ≤ x

U
  

with the restriction that all coefficients 
k i

C  > 0, 
0
0

i j
a < , 

1
0

i j
a > . Note that  

k i
C = coefficient of the kth function, ith term, while ak i j = exponent corresponding 

to the kth function, ith term, and jth variable. Derivatives are calculated analytical-

ly. 

Data: x
L
 = 10

‒6
, x

U
 = 1, 

0
(0,1)

i
C ∈ , 

1
(0.2,1)

i
C ∈ , 

0
( 1, 0)

ij
a ∈ − , (0 ,1)k i ja ∈ ,  

t0 = tk = 8, x
0
 = 0.5. To ensure that the constraint is active,  

1
1

i

i

C >∑ . 

Table 2 shows results for various random generated trials. The fixed-point itera-

tion method far outperforms the NLP routine for the class of problems considered. 

Total computation in NLP methods increase with n while fixed-point iteration met-

hods are insensitive to it, as also noted in the structural optimization literature. 
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Table 2  

Randomized test problem 

n NFE4 as per 

Fixed-point algorithm1 

NFE as per 

NLP algorithm2 

f *_fixed-point /  

f *_NLP 2 

10  50 363 1.027 

20 50 1,131 1.030 

403 50 3,008 1.003 

1 fixed value 
2 averaged over 5 random trials 
3 larger values of n cannot be solved in reasonable time by the NLP routine 
4 NFE = Number of Function Evaluations 

6. Conclusions 

In this paper, an optimality criteria based fixed-point iteration is developed for  

a class of nonlinear programming problems. The class of problems require that the 

variables are positive, derivatives of  f  are negative, and derivatives of gj are posi-

tive. Certain extensions of this subclass of problems have been given. Hitherto, 

fixed-point methods were only developed in a problem-specific manner in the field 

of structural optimization. Convergence aspects are discussed. The fixed-point iter-

ation algorithms to be found in the structural optimization literature, albeit target-

ing more general problems than considered here, are presented without clearly stat-

ing assumptions under which convergence may be achieved, and in fact, have been 

observed to not converge in certain situations. Moreover, these have been devel-

oped for  problem specific applications in the structural optimization and have not 

targeted general functions f and gj even within a subspace of functions. Important-

ly, the fixed-point update, within this general context, is given physical signifi-

cance in this paper. 

Results show that for the subclass of problems considered, fixed-point iterations 

far outperform an NLP method. This is a general result because the fixed-point  

iteration method does not involve line search, a main step in NLP methods, which 

requires computationally expensive multiple function evaluations, even with the 

use of approximations. A fixed-point algorithm is insensitive to n whereas in NLP 

methods, the number of iterations increase significantly with n. In the algorithm 

presented, the value of w (or p) requires, at most, a one-time adjustment based on  

a simple rule, viz. if oscillations in the maximum constraint violation are noticed 

during the iterations, then w is reduced (or p is increased); a smaller value of w 

than that needed also works except that more iterations are needed, as there is more 

emphasis on the previous point. A default value of w = 0.25 has worked well on the 

examples here. New applications need to be explored for using the algorithm. 



Fixed-point iteration based algorithm for a class of nonlinear programming problems 41

References 

[1] Venkayya V.B., Design of optimum structures, Computers and Structures 1971, 1, 265-309. 

[2] Berke L., An efficient approach to the minimum weight design of deflection limited structures, 

AFFD1-TM-70-4-FDTR, Flight Dynamics Laboratory, Wright Patterson AFB, OH 1970. 

[3] Khot N.S., Berke L., Venkayya V.B., Comparison of optimality criteria algorithms for minimum 

weight design of structures, AIAA Journal 1979, 17(2), 182-190. 

[4] Dobbs M.W., Nelson R.B., Application of optimality criteria to automated structural design, 

AIAA Journal 1975, 14(10), 1436-1443. 

[5] Khan M.R., Willmert K.D., Thornton W.A., Optimality criterion method for large-scale struc-

tures, AIAA Journal 1979, 17(7), 753-761. 

[6] McGee O.G., Phan K.F., A robust optimality criteria procedure for cross-sectional optimization 

of frame structures with multiple frequency limits, Computers and Structures 1991, 38(5/6), 485- 

-500. 

[7] Yin L., Yang W., Optimality criteria method for topology optimization under multiple con-

straints, Computers and Structures 2001, 79, 1839-1850. 

[8] Belegundu A.D., A general optimality criteria algorithm for a class of engineering optimization 

problems, Engineering Optimization 2015, 47(5), 674-688. 

[9] Patriksson M., A survey on the continuous nonlinear resource allocation problem, European 

Journal of Operational Research 2008, 185(1), 1-46. 

[10] Jose J.A., Klein C.A., A note on multi-item inventory systems with limited capacity, Operations 

Research Letters 1988, 7(2), 71-75. 

[11] Atkinson K.E., An Introduction to Numerical Analysis, John Wiley, 1978. 

[12] Bryant V., Metric Spaces: Iteration and Application, Cambridge University Press, 1985. 

[13] Belegundu A.D., Chandrupatla T.R., Optimization Concepts and Applications in Engineering, 

2nd edition, Cambridge University Press, 2011. 


