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Abstract. The boundary problem of free vibrations of a hydraulic telescopic cylinder, sub-

jected to Euler’s load was presented in this work. The task was formulated on the basis of 

the Hamilton’s principle. The computational model, formulated by Tomski, was taken into 

account during analysis. Numerical calculations concern free vibrations of multi-stage  

hydraulic telescopic cylinder. Results were presented in the form of characteristic curves on 

the plane: external load-natural vibration frequency. Non-dimensional parameters of the 

structure were defined in reference to the characteristic parameters of the piston rod. During 

numerical simulations, an influence of a non-dimensional stiffness parameter between fol-

lowing elements on free vibrations of a hydraulic telescopic cylinder was determined for 

a different number of cylinder stages.      
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1. Introduction  

Hydraulic cylinders are certain kinds of motors, which convert the energy of 

compressed hydraulic fluid to mechanical energy. A typical example is a linear 

single-acting cylinder, which is under consideration in this thesis. One-stage and 

multi-stage (telescopic) cylinders can be found depending on the number of stages. 

Telescopic cylinders are used when a long output range and a very compact  

retracted length are required. They are used especially in dump trucks (dump body) 

and hydraulic elevators. 

Two different computational models concerning the stability and vibrations of 

hydraulic cylinders were developed by Tomski [1, 2]. The first model refers to free 

transversal vibrations and static stability of cylinders. It is used for cylinders with 

a high slenderness ratio [1]. The second model refers to free longitudinal vibrations 
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and forced vibrations. This kind of model is used for a cylinder with a low slender-

ness ratio [2]. The limiting values of parameters, when the computational model 

has to be changed can be assumed when free transversal and longitudinal vibrations 

are equal. Free transversal vibrations of cylinders, formulated on the basis of the 

first computational model, were considered in works [1-6]. The results of numeri-

cal simulations according to the one-stage hydraulic cylinders for different bounda-

ry conditions and parameters of structure can be found in those papers. Parameters 

of cylinders are: degree of coverage, stiffness of fixed, stiffness of piston rod and 

cylinders, stiffness of sealing and guiding elements. In paper [3] longitudinal iner-

tia of the piston rod has been taken into account due to analysis. The effect of pres-

sure along the cylinder, which has significant impact on its strength was presented 

in work [4]. In papers [5, 6] the results of experimental analysis of one-stage  

hydraulic cylinder were carried out what confirmed the proposed computational  

model.  
In this paper, the effect of rigidity between the following elements (sealing and 

guiding elements for piston rod and all of cylinders) on characteristic curves is  

analysed. In the numerical research the different number of stages (one, three, five 

stage hydraulic cylinders) were taken into consideration.   

2. Boundary value problem  

The considered n-stage telescopic hydraulic cylinder subjected to Euler’s load is 

presented in Figure 1. Structure consists of n cylinders and the piston rod. The 

overall length of the configuration was defined as lC. 

In this work, the telescopic hydraulic cylinder is considered as fully extended 

and simply supported on both ends. The torsional rigidity of sealing and guiding 

elements was modelled by rotational springs of CRi  stiffness. Stiffness of rotational 

springs are as follows: CR1 = CR2 = CR3 = CR4 = CR5 = CR. Geometrical dimensions 

of the cylinders (outer diameter dzi and inner diameter dwi) were defined as: 

 
2( ) 2( )

2( ) 2( 1)

zi t U R

wi t U R

d d n i g n i g

d d n i g n i g

= + − + −

= + − + − −

  (1a,b) 

where gU and gR stand for the thickness of the sealing element and cylinder.  

Each element of the hydraulic cylinder is characterized by adequate flexural  

rigidity (EJ)i (E - Young’s modulus, J - geometrical inertia moment) and mass per 

length unit (ρA)i (ρ - density, A - area of cross section). The mass of the hydraulic 

fluid, which fills the cylinders is (ρA)ci ((ρA)cn = 0), masses of sealing and guiding 

elements mi were taken into consideration. Elements of the structure marked as  

i = 1,2,…,n-1 correspond to cylinders and the n-element correspond to the piston 

rod. 
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The boundary problem has been formulated on the basis of Hamilton’s  

principle. 

 

 

Fig. 1. Scheme of n-stage telescopic hydraulic cylinder subjected to Euler’s load 

Potential energy (V) and kinetic energy (T) are as follows: 
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Taking into account the potential and kinetic energy in Hamilton principle, after 

appropriate transformations, differential equations of motion and natural boundary 

conditions are obtained. Differential equations of motion after separation of varia-

bles can be written as follows: 
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where ω is free vibrations frequency. 

Boundary conditions (geometrical and natural) are expressed as follows:  
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Solutions of differential equations (4) can be written as: 

 ( ) cosh( ) sinh( ) cos( ) sin( )
i i i i i i i i i i i i i i
y x A x B x C x D xα α β β= + + +  (6) 

where: 
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After substitution of the solution (6) into boundary conditions, the system of 

equations is obtained. The matrix determinant of coefficients equated to zero leads 

to the transcendental equation, from which the natural vibration frequency of the 

system can be determined. 
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3. Results 

Results of numerical simulations of free vibrations of the considered telescopic 

hydraulic cylinder were presented in the non-dimensional form, defined as: 
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Fig. 2a-c. Characteristic curves on non-dimensional plane for different parameters of 

stiffness between elements (dt = 0.1 m, ζGU = 0.05, ζGR = 0.1)  

In Figure 2 characteristic curves (λcr(Ω*)) in case of: one-stage cylinder  

(Fig. 2a), three-stage cylinder (Fig. 2b), five-stage cylinder (Fig. 2c) are presented.  

Numerical calculations were carried out for chosen cylinder parameters (dt = 0.1 m, 

ζGU = 0.05, ζGR = 0.1) and for different values of a non-dimensional parameter of 

rotational spring stiffness c (c = 0.8; 4; 8; 16; 32; 64; 128; 256; 518; 1/c = 0).  

An influence of the considered stiffness of rotational nodes in which the ends of 

individual hydraulic cylinder elements are joined, on natural vibration frequency 

magnitude depends on this stiffness as well as on the number of stages. 
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4. Conclusions 

The boundary problem of free vibrations of a telescopic hydraulic cylinder sub-

jected to Euler’s load was considered in this paper. The results were plotted in the 

form of characteristic curves. An influence of the guiding and sealing elements 

stiffness on dynamic behaviour were analysed. 

On the basis of the obtained results, it can be concluded that the stiffness of the 

sealing and guiding elements have great influence on vibration frequency and criti-

cal load (in the presented problem the critical load corresponds to the zero magni-

tude of the vibration frequency - kinetic stability criterion). The smaller the rota-

tional node stiffness the greater its influence on vibration frequency and critical 

load. On the basis of the proposed non-dimensional parameters, the obtained rela-

tion load - vibration frequency is linear. The characteristic curves are parallel to 

each other at the considered configuration of the system. Reduction of stiffness of 

guiding and sealing elements due to wear or damage can have serious consequenc-

es in further exploitation of the hydraulic cylinders because the reduction of load-

ing capacity as well as vibration frequency can be observed. 
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