AM Journal of Applied Mathematics and Computational Mechanics 2017, 16(3), 123-128

www.amem.pez.pl p-ISSN 2299-9965
C M DOI: 10.17512/jamem.2017.3.12 e-ISSN 2353-0588

RECURRENCE RELATIONS FOR A MULTI-CHANNEL
CLOSED QUEUEING SYSTEM WITH ERLANGIAN
SERVICE TIMES OF SECOND ORDER

Yuriy Zhernovyi', Bohdan Kopytko®

! Ivan Franko National University of Lviv, Lviv, Ukraine
’Institute of Mathematics, Czestochowa University of Technology
Czestochowa, Poland
yu.zhernovyi@lnu.edu.ua, bohdan.kopytko@im.pcz.pl

Received: 19 June 2017; Accepted: 21 August 2017

Abstract. We propose a method for determining the steady-state characteristics of a multi-
channel closed queueing system with exponential distribution of the time generation of
service requests and the second order Erlang distributions of the service times. Recurrence
relations to compute the steady-state distribution of the number of customers are obtained.
The developed algorithms are tested on examples using simulation models constructed with
the assistance of the GPSS World tools.
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1. Introduction

Closed queueing systems are widely used as models to evaluate characteristics
of information systems, data networks and queueing processes in production,
transport, trade, logistics and service systems [1]. The closed system is also called
the system with a finite number of sources or an Engset system.

Suppose that a queueing system with » channels receives service requests from
m identical sources. Each source is alternately on and off. A source is off when it
has a service request being served, otherwise the source is on. A source in the
on-state generates a new service request after an exponentially distributed time (the
generation time) with mean 1/ 4. The sources act independently of each other. The
service time of a service request has the second order Erlang distribution. A service
request, that is generated when » channels are occupied, waits in the queue.

To investigate the systems with Erlangian service times, in particular the
MIEJ/1/0 system [2], the method of fictitious phases, developed by A.K. Erlang
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[3], was applied. The Erlangian service times of the second order means that each
customer runs two service phases sequentially, the duration of which is distributed
exponentially with parameters s, and g, respectively.

The objective of this work is the construction with the aid of a fictitious phase
method that is a recursive algorithm for computing the steady-state distribution of
the number of customers in the multi-channel closed queueing system. We consider
the system with an exponential distribution of the time generation of service re-
quests and Erlangian service times of the second order. A similar approach is used
in [4, 5], where recursive algorithms are developed for the systems M/E,/2/m,
MIEy/2/0, MIE,)/3/m and M/E,/3/x0 as well as for the systems of the same types
with threshold and hysteretic strategies of the random dropping of customers.

2. Construction of a recursive algorithm

Suppose that the service time of each customer is distributed under the general-
ized Erlang law of the second order, that is, the service time is the sum of two in-
dependent random variables exponentially distributed with parameters g, and g,

respectively.

Let n, denote the number of customers in the system. Based on the phase meth-
od, we introduce the following designations for system states: s, signifies that
customers are absent in the system; s, signifies that there are £ customers in the
system (1 <k <m) and that i customers are at the first phase of service and j cus-
tomers are at the second phase (0<i<n <n, 0<j<n <n, 1<i+j<n <n or
0<i<n<n, 0<j<n<n, 1<i+j<n<n). We denote steady-state probabili-
ties that the system is in the states s, and s, by p, and p, . respectively. Then
we obtain the following system of equations for determining these probabilities:

—APy + 1y Pyory = 0;

—(A, +ku, )pk(Ok) + M Prasn T (k+ 1),uzpk+l(07k+l) =0, 1<k<n-1,

-4, + k,ul)pk(ko) + ﬂ’k—lpk—l(k—l,O) D gn =0, 1< k<n-1; Doooy = Po>

(A + k= Dty + 1) Py + A Py + k= J+ DA Dy oy +
T Dm0y =0, 1S j<k=1, j+1<k<n-1;

(A A1) Pyioy + Aui Pacsnroy T HoPainrny = 05

—(4, + n,ul)pk(no) + ﬂk_lpk_l(no) T M Prinrny = 0, n+1<k<m-1;

_n/ulpm(no) + ﬂ'p”1*1("0) = 0’

)

_(ﬂ’n + (n - ])/ul + jluz)pn(n—j,j) + ﬂ’n—lpn—l(n—j—l,j) + (}’l - ] + l)lulpn(rl—j'*-l,j—l) +
+ (] + 1)#2pl’l+l(}’l—j—l,j+l) = 0’ 1< ] <n- 17
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_(/1;c +(n—u, + Jﬂz)pk(n-j,j) + /Ik—lpk—l(n—j,j) +(n—j+ 1)/‘1pk(n—1+l,j—l) +
+U+DmPi =0, ntl<k<m-1, 1<j<n-I;

=(4, 1) Doy + HiPrinry =05
~(A 1) Dromy + s Picrom F M1 Piinry =05 n+1<k<m—1;
UL Py eiomy + APrcony T Hy Py = 05 (2)
—((n D, )pmm(n—j,/) + APy T
+(m=j+ D Ppin iy =0, 1< j<n—1;
n ok m oo
Pyt ;Z(;Pm-m + k%zo‘,pk(n_i,,) =1, 3)

where 4, =(m—k)A, 0<k<m-1.
Introducing the notation

A A
o, =25, o, =25 0<k<m-1, n=%2;
Hy H, Hy
~ p ij ~ ~
Prpy = KD 1<k <m; Doy = i» 1Sk<n=1 Prinoy =q» n<k<m—1,
0

and using equations (1), we find:
= = a’ﬂ— = 1
Doy = Q25 Punoy :71%7—1; Poany :_((al +Dgq, _ao);
- 1
Doy = ;((ak—l +hk=1q,, —% .9, )a 3<k<n

. 1 . N .
Pre-j ) = j_ﬂ((ak—l +(j-Dn+k- J)pk—l(k—j,j—l) - ak—Zpk—2(k—j—l,j—l)) -

k—j+1_ . .
_.—ka—l(k—‘/+l,j—2)’ 2<j<n-1, j+1<k<m;
. Jn
ﬁk(Ok) = _((ak—l +(k— l)ﬂ)ﬁk—l(o,k—l) - ﬁk—l(ljk—Z) )a 2<k=<m 4
kn

- 1
Pran-iny = ;((an + n)qu &, 49, );

- 1 . N -
Poan-jjpy = j_ﬂ((an +(j-Dnp+n+1- J)pn(n-j+1,j—1) & Prin—j ) ) -

n—j+2 _
_j—npn(n—j+2,j—2)’

- 1
Piay = ;((ak—l +n)q,, - ak—z%c—z)’ n+2<k<m

2<j<m
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- 1 . N ~ -
Pin-jjy = E((ak—l +(j-Dnp+n+l- J)pk—l(n—]+1,‘]—l) - ak-zpk—zm—jﬂ,/—l)) -

—%ﬁﬁkw_ﬁm_z), 2<j<n n+2<k<m.

Recurrence relations (4) allow us to calculate p,,;, as linear functions of the

unknown parameters ¢, (1<k <m—1) in the following sequence:

Pinoys Priryy (1S k <n); Digrany (25 k <n); Digeszy S k <n);
Prk-a.4) (4<k< n);"‘;ﬁn—2(0,n—2)9 ﬁn—l(l,n—Z)’ Puan-2)s ﬁn—l(o,n—l)i pn(l,n—l); pn—l(l,n—Z)’ ﬁn(On);
ﬁnﬂ(n_j)j), (I1<j<n); ﬁk(n_l)l) (n+2<k<m)

Dinany (M+25k<m); P, 55 (B+2<k<m); ... Doy (M+2<k<m).

To determine g, (I<k<m—1), any m—1 equations from formulas (2) can be
used. The equations (2) have not been involved in obtaining relations (4).

Using the normalization condition (3), we find steady-state probabilities by the
formulas

=

Po = (1 + Zﬁk(kO) +
k=1 i

k
D=2 Proryr 1Sk<m p=3 Py n+1<k<m.
i=0

i=0

n m n -1
Prge-ing T Pi-iiy | > Pr = PoDs> I<k<m;
01 =i =

k=n+1 i=0
n

Here p, is the steady-state probability that n, =k. We calculate the steady-state

characteristics - the average number of customers in the system E(#,), the average
queue length E(Q) and the average waiting time E(W) - by the formulas

o)=Yk, BQ)= Y (-mp.  BO)--2.

av

Here A, is a steady-state value of the arrival rate of customers, defined by the
equality

m=1

j“av = /12(7}’1 - k)pk
k=0

The parameter A, is a characteristic of the system capacity, because for the

steady-state regime, we have the equality of the intensities of flows of customers
arriving and served.
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3. Numerical examples

Consider twentieth-channel closed queueing systems with an exponential distri-
bution of the time generation of service requests and Erlangian service times of the
second order for the following values of the parameters: m =30;40;50; A =1;
My =1, =2,

The values of the steady-state probabilities characteristics of the system, found
using the recurrence relations obtained in this paper, are presented in Table 1 and 2.
In order to verify the obtained values, the tables contain the computing results

evaluated by the GPSS World simulation system [6] for the time value ¢ =10°.

Table 1

Stationary distribution of the number of customers in the system

Values of the steady-state probabilities p,

k m =30 m =40 m =50
Recurrence | GPSS Recurrence | GPSS Recurrence | GPSS
method World method World method World

0 | 1.056:107'2 | 0.000000 | 1.496-10""7 | 0.000000 | 3.542:107* | 0.000000
1 | 4.760-107" | 0.000000 | 9.159-107' | 0.000000 | 2.811-102% | 0.000000
2 | 1.037-10° | 0.000000 | 2.736:107* | 0.000000 | 1.096:107%° | 0.000000
3 | 1.454:10° | 0.000000 | 5.315-10" | 0.000000 | 2.799-107"° | 0.000000
4
5

1.475-107 | 0.000000 | 7.548-107'2 | 0.000000 | 5.266:10"" | 0.000000
1.153-10° | 0.000001 | 8.353-10"" | 0.000000 | 7.784-10"" | 0.000000
10 | 0.001868 | 0.001883 | 9.460-10~ | 0.000004 | 4.320-1072 | 0.000000
15 | 0.074600 | 0.074590 | 0.000425 | 0.000406 | 1.300:10° | 0.000000
20 | 0.116516 | 0.117011 | 0.016895 | 0.016916 | 5.467-10° | 0.000002
21 | 0.086435 | 0.085993 | 0.027838 | 0.027924 | 0.000015 | 0.000015
22 | 0.056151 | 0.055804 | 0.042782 | 0.043157 | 0.0000411 | 0.000035
23 | 0.031662 | 0.031370 | 0.061267 | 0.060925 | 0.000106 | 0.000105
24 | 0.015288 | 0.015470 | 0.081565 | 0.081926 | 0.000258 | 0.000283
25 | 0.006201 | 0.006080 | 0.100634 | 0.100669 | 0.000596 | 0.000616
26 | 0.002057 | 0.002009 | 0.114632 | 0.114369 | 0.001308 | 0.001281
27 | 0.000536 | 0.000510 | 0.120022 | 0.119740 | 0.002715 | 0.002826
28 | 0.000103 | 0.000100 | 0.114914 | 0.115003 | 0.005327 | 0.005292
29 | 0.000013 | 0.000009 | 0.100011 | 0.099971 | 0.009856 | 0.009873
30 | 7.985-107 | 0.000000 | 0.078564 | 0.078377 | 0.017158 | 0.017189

31 - - 0.055242 0.054938 | 0.028042 0.027858
32 - - 0.034419 0.034723 | 0.042909 0.043099
33 - - 0.018766 0.018799 | 0.061298 0.061235
34 - - 0.008813 0.008854 | 0.081490 0.081228
35 - - 0.003492 0.003495 | 0.100453 0.100511
36 - - 0.001135 0.001104 | 0.114361 0.114362
37 - - 0.000290 0.000314 | 0.119694 0.119866
38 - - 0.000055 0.000046 | 0.114571 0.114588

39 - - 6.802:10° | 0.000006 | 0.099694 0.099532
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40 - - 4.149-107 | 0.000000 | 0.078304 0.078887
42 - - - - 0.034299 0.034318
44 - - - - 0.008781 0.008891
46 - - - - 0.001131 0.001142
48 - - - - 0.000055 0.000062
50 - - - - 4.133-107 | 0.000000
Table 2
Stationary characteristics of the system
Method m E(n,) E(Q) E(W) A
Recurrence 30 | 18.161167 | 0.402916 0.034033 11.838833
GPSS World 30 | 18.158 0.402 0.034 -
Recurrence 40 | 26.689706 | 6.724264 0.505193 13.310294
GPSS World 40 | 26.687 6.725 0.505 -
Recurrence 50 | 36.666670 | 16.666673 | 1.250001 13.333331
GPSS World 50 | 36.665 16.667 1.250 -

4. Conclusions

The numerical algorithm for solving a system of linear algebraic equations for
the steady-state probabilities, proposed in this paper, is constructed taking into
account the structural features of the system, in particular the presence of three or
four unknown features in most of its equations. The obtained recurrence relations
are used for the direct calculation of the solutions of the system, that allows us to
reduce the amount of calculations in comparison with the case of application of one
of the classical methods (direct or iterative). Using the obtained recurrence rela-
tions makes it possible to reduce the number of solved equations from
(n+D)2m+2-n)/2 to m—1.

References

[1] Nesterov Yu.G., Analysis of characteristics of a closed queuing system with relative priorities,
Nauka i Obrazovanie. MGTU im. N. Baumana 2014, 3, 242-254 (in Russian).

[2] Bocharov P.P., Pechinkin A.V., Queueing Theory, RUDN, Moskow 1995 (in Russian).

[3] Brockmeyer E., Halstrom H.L., Jensen A., The Life and Works of A.K. Erlang, Danish Acade-
my of Technical Sciences, Copenhagen 1948.

[4] Zhernovyi K.Yu., Determining stationary characteristics of two-channel queueing systems with
Erlangian distribution of service time, Cybernetics and Systems Analysis 2017, 53, 1, 92-104.

[51 Kopytko B., Zhernovyi K. Steady-state characteristics of three-channel queueing systems with
Erlangian service times, Journal of Applied Mathematics and Computational Mechanics 2016,
15(3), 75-87.

[6] Zhernovyi Yu., Creating Models of Queueing Systems Using GPSS World, LAP Lambert
Academic Publishing, Saarbriicken 2015.



