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Abstract. A numerical simulation of an incompressible viscous flow using the finite ele-

ment method is presented. In this study, the pressure stabilization technique is suggested for 

the treatment of the incompressibility constraint for both steady and unsteady flow cases. 

To the best of the authors’ knowledge, the pressure stabilization technique is used for 

steady flows only. The proposed technique allows for equal low-order interpolation poly-

nomials to be used for all variables which circumvent the so-called LBB compatibility  

condition without pressure checker boarding and solution instabilities. Results are obtained 

for two benchmark problems, namely, lid-driven cavity flow and the vortex-shedding  

behind a circular cylinder. The results are compared with published numerical and experi-

mental works with an apparent degree of success. 
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1. Introduction 

The numerical simulation of unsteady incompressible flows is one of the most 

challenging topics since the continuity equation becomes a constraint equation for 

the velocity field rather than being an evolution equation for the density field. This 

problem appears when assuming incompressible fluids i.e. fluid with constant La-

grangian density and consequently the pressure does not affect the density. Differ-

ences in various methods of treating the incompressible flow equations originate 

from differences in strategies for satisfying the incompressibility constraint [1]. 

There are many methods for treating the incompressibility constraint in literature 

such as weakly incompressible solvers [2-4], the semi-implicit method for pres-

sure-linked equations (SIMPLE) [5], the penalty formulation [6], the artificial 
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compressibility formulation [7] and the pressure stabilization formulation [8]. 

Hughes [9] has suggested the penalty formulation for both steady and unsteady 

flow cases. 

In this study, we adopt the pressure stabilization technique since equal order of 

interpolation functions for velocity and pressure can be used for finite element  

spatial discretization which is considered the main advantage of this formulation. 

This formulation is suggested and used by Habashi [10] for steady laminar viscous 

flows. The results in this work prove the validity of this technique for steady and 

unsteady flows with lower computational costs compared with the other traditional 

methods. 

2. Governing equations  

For non-polar Newtonian fluids with no heat or mass addition, conservation of 

linear momentum and mass for incompressible, unsteady, two-dimensional planar 

flows read 

 � ��

��
+ ��� ∙ ∇�� = ∇ ∙ � − ∇�,	 (1) 

 ∇ ∙ � = 0,	 (2) 

where � is the density,	� is the velocity vector,	� is the isotropic pressure and the 
stress tensor	� is given by: 
 		� = 2	
	 (3) 

where 	 is the constant shear viscosity, and 
 is the rate of the strain tensor given 
by: 
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�

�
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From a mathematical point of view, the dimensionless formulation of the gov-

erning equation is preferable, so we use the following non-dimensional scheme: 	 
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where  is a characteristic length, �� is the free stream velocity and �� is the free 

stream pressure. Omitting the asterisk (*) for simplicity, the non-dimensional  

Cartesian form of the governing equations can be written as: 
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where � and � are the horizontal and vertical velocity component respectively, 	�	is 
the physical time and Re is the Reynolds number defined as: 

 Re =
	���

�
 (8) 

where	� is the kinematic viscosity. 

2.1. Pressure stabilization technique 

In this formulation [8], the continuity equation is modified by adding a Laplaci-

an term as follows: 

 
��

�	
+

�


��
= ���� (9) 

With this formulation, the conservation equations are coupled and the pressure 

checker boarding can be avoided. The main advantage of this formulation is the 

ability to use equal-order for interpolation functions for all variables which  

decreases the computational costs. See also [11] for more details. 

3. Solution procedure 

The standard Galerkin finite element method is used for the continuity equation 
since it is of an elliptic type while the GLS stabilization technique [12, 13] is used 
for the momentum equations since it is of a parabolic-hyperbolic type and conse-
quently the convective terms need special treatment. Quadrilateral elements are 
chosen and all variables are interpolated by equal order bilinear shape functions. 
All integrals are evaluated numerically using the 3-point Gauss-Legender quadra-
ture. The non-linear terms are linearized by average values of the velocity  
components over each element [14]. The Euler explicit scheme is used for time 
marching process. The time step is chosen in such a way to satisfy the CFL number 
to obtain a stable solution. Lumping approximation is applied to the consistent 
mass matrix converting it to a diagonal matrix [14]. The details are omitted sue to 
space limitations. See also [11] and [15] for more details. 

4. Numerical results 

The proposed formulation is applied to two benchmark problems. The first 
problem is the Lid-driven cavity flow and the second is the flow over circular  
cylinder. The governing equations are solved for different values of the Reynolds 
number and the results are compared with published numerical and experimental 
works. 
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4.1. Lid-driven cavity flow 

The flow is confined in a unite square bounded by solid walls with a moving top 

boundary to the right. Due to the singularity of the flow field at the upper corners, 

we chose the regularized boundary condition for the upper wall which is given by 

the following relation: 

 	���� = 4��1 − �� (10) 

The no-slip boundary condition for velocity components are imposed at the  

solid walls. Pressure is specified to be zero at the lower left corner point, with zero 

gradient over the walls. The Reynolds number is based on the side length of the 

cavity and the speed of the lid. 

4.1.1. Results and discussion 

The first simulation for this problem is performed with clustered grid of  

(40 x 40) elements to capture the high gradient near the walls as shown in Figure 1. 

The Reynolds number is set to 100. For stability requirement, the time step is taken 

as 0.0001 and the pressure dissipation parameter is	� = 0.001. The flow reaches 
the steady state after ten seconds with a total number of iterations of 100000. Fig-

ures 2 and 3 show the streamlines, the axial � component at x = 0.5 respectively 

which is compared with the work of [2], [16] and [17] with an apparent degree of 

success. 

The second simulation is performed for Re = 1000 with the same mesh and the 

flow conditions. With the comparison of the previous case, it is noted that the time 

required for obtaining the steady state solution increases with the increase of the 

Reynolds number, as it takes about 30 seconds. The corresponding streamlines and 

pressure contours are shown in Figures 4 and 5, respectively. Along with the axial 

velocity at		� = 0.5 in Figure 6. The results for this case are compared with the  

results obtained in [13]. 

 

      

                      Fig. 1. Clustered 40 x 40 mesh                     Fig. 2. Steady streamlines at Re = 100 
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Fig. 3.	�-comonent velocity at  x = 0.5             Fig. 4. Steady streamlines for Re = 1000 

More solutions are obtained for this problem at a wide range of the Reynolds 

number values to show the effect of the Reynolds number on the primary vortex 

location and axial and normal velocities. The effect of Reynolds number can be  

also clearly seen from the axial and normal velocity components profiles at  

x = 0.5 and  y = 0.5 as shown in Figures 7 and 8, respectively. 

                          

Fig. 5. Pressure contours for Re = 1000      Fig. 6. �-comonent velocity at	� = 0.5 for Re = 1000 

                 

                 Fig. 7. Axial velocity at x = 0.5             Fig. 8. Normal velocity at y = 0.5 
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4.2. Flow over circular cylinder 

One of the most challenging problems for numerical simulation of incompressi-

ble flows is the study of the flow over a circular cylinder. The dimensions of the 

computational domain are 20 and 9 cylinder diameters in the flow and cross-flow 

directions, respectively. The centre of the cylinder is located at a distance of 5  

cylinder diameters from the inlet boundary and is located in the middle distance  

between the upper and lower boundaries. A clustered grid with a smaller element 

size near the cylinder wall is used as shown in Figure 9 with a total number of ele-

ments of 1200. 

 

 

Fig. 9. Geometry and grid for the flow over cylinder problem 

The initial conditions are zero velocity and pressure everywhere. Uniform  

velocity with a magnitude of 1 is specified at the inlet and normal derivative of the 

�-velocity component and the	�-component itself are considered zero at the upper 

and lower boundaries [14]. The Reynolds number is based on the inlet velocity and 

cylinder diameter. The no-slip boundary condition for velocity components is  

imposed on the cylinder surface. Neumann boundary condition for pressure is  

imposed at the upper and the lower boundaries. At the exit boundary, the pressure 

is fixed to be zero. 

4.2.1. Results and discussion 

4.2.1.1. Steady state flow  

The evolution of the flow eddies behind the cylinder is studied by varying the 

Reynolds number. 

It is apparent that the pair of vortices symmetrically grows with the increase in 

the Reynolds number as shown in Figure 10. This fact can be shown clearly 

through the relation between the normalized reattachment length (S/D) and the 

Reynolds number, where S is the distance measured from the right end-point of the 

cylinder to the reattachment point where the two eddies end. The results obtained 

are compared with [2], [18] and [19] and summarized in Table 1. From the above 
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results, it could be concluded that the pair of eddies grows almost linearly with the 

increase in the Reynolds number. 

 

 

            (a) Re = 20                                                            (b) Re = 60 

Fig. 10. The effect of increasing of Reynolds number on the length of the symmetric  

vortices 

Table 1  

Comparison of predicted reattachment length ratios (S/D) 

Re Teneda [18] Xu et al. [2] Huang et al. [19] Present work 

25 1.15 1.12 .991 1.09 

30 1.49 1.50 1.272 1.32 

35 1.80 1.84 1.531 1.63 

40 2.20 2.22 1.94 1.88 

42 2.35 2.26 2.09 2.02 

4.2.1.2. Time-dependent flow  

The solution for this case is obtained with Re = 100. For the stability require-

ment, the time step is set to 0.0005 and the pressure dissipation parameter is 0.005. 

Initially, a pair of symmetric attached vortices grew behind the cylinder. It is found 

that two vortices expand gradually with time increase which agrees with the exper-

imental and numerical works in [14] and [20].  

As time increases, small oscillations begin to occur. To capture the vortex shed-

ding, a perturbation is introduced in the flow. This perturbation is inserted by 

changing the initial conditions by which the flow enters vertically [21]. It takes 

about 50 seconds to capture the vortex shedding which agrees with [14] and [20]. 

The observed period shedding time	�� is 5.925 time units (corresponding to 11850 

time steps), giving a dimensionless shedding frequency, or Strouhal number  

(St = �/����) of 1.687 compares well with the results of [14] and [20]. The vor-
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tex shedding is shown using the streamlines and pressure contours for different 

times in Figures 11 and 12, respectively. 

 

     
                 (a) Streamlines at � = 100	�                           (b) Streamlines at � = 100 + �

4� 	�    

            
                 (c) Streamlines at � = 100 + �

2� 	�               (d) Streamlines at � = 100 + 3 �
4� 	� 

Fig. 11. Streamlines for different times of one cycle of the vortex shedding for Re = 100 

         
(a) Pressure contours at � = 100	�                  (b) Pressure contours at � = 100 + �

4� 	� 

Fig. 12. Pressure contours for two different times of one cycle of the vortex shedding  

for Re = 100 
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5. Summary and conclusion 

In this study, the pressure stabilized technique is suggested for treating the  

incompressibility constraint. The pressure stabilization parameter � is chosen to be 
in the order of the time step. The proposed technique circumvents the LBB com-

putability condition, stable solutions are obtained and equal-order interpolation 

functions are used for all flow variables. A hybrid Galerkin Least-squares finite  

element/finite difference scheme is used in the discretization process. Two bench-

mark problems, namely, lid-driven cavity flow and flow over circular cylinder are 

considered. The results prove that the pressure stabilized technique, usually used 

for steady flows only, can be also used for both steady and unsteady flows.  

For flow in the lid-driven cavity, results are obtained for different values of the 

Reynolds number. The axial velocity profile at x = 0.5 is compared with published 

works with an apparent degree of agreement. The results assert that with the in-

crease of the Reynolds number, the main vortex moves down to the center of the 

cavity which is consistent with the published experimental and computational 

works. For flow over the circular cylinder, steady symmetric vortices at low Reyn-

olds number values i.e. Re < 100 are observed. It is noted that the length of the 
vortex increases with the increase of the Reynolds number. The relation between 

the length of the vortex and the Reynolds number is summarized. It is noted also 

that the flow over the circular cylinder becomes time-dependent or periodic when 

the Reynolds number is higher than 100. The vortex shedding is captured success-

fully with the non-dimensional Strouhal number of 1.687 which agrees with the 

published computational results.  
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