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Abstract. The 1D dual-phase lag equation (DPLE) is solved using the implicit FDM 

scheme. The dual phase lag equation is the hyperbolic PDE and contains a second order time 

derivative and higher order mixed derivative in both time and space. The DPLE results from 

the generalization of the well known Fourier law in which the delay times are taken into ac-

count.   So, in the  equation discussed, two positive parameters appear. They correspond to the 

relaxation time τq and the thermalization time τT. The DPLE finds, among others, the applica-

tion as the mathematical description of the thermal processes proceeding in the micro-scale. 

In the paper, the numerical solution of DPLE based on the implicit scheme of the FDM is 

presented. The authors show that a such an approach in the case of DPLE leads to the un-

conditionally stable differential scheme. 
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1. Introduction 

Most typical problems in the field of transient heat conduction proceeding in the 

macro-scale are sufficiently good described by the well-known Fourier equation 

(energy equation). The considerations leading to this equation are based on the 

Fourier law in the form  

 ( , ) λ ( , )x t T x t= − ∇q  (1) 

where q is a heat flux vector, λ is a thermal conductivity, ( , )T x t∇ is a temperature 

gradient. The dual-phase lag model is based on the generalized form of the Fourier 

law, namely [1, 2] 
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 ( , ) λ ( , )q Tx t T x t+ τ = − ∇ + τq  (2) 

where τq is the relaxation time and τT is the thermalization time. In the case of met-

als, both the relaxation and thermalization times are very small and, considering the 

macro-scale problems, they may be omitted (as in formula (1)). Another situation 

takes place for the micro-scale heat conduction problems. 
When the characteristic length of the domain is comparable to or smaller than 

the mean free path of heat carriers or the duration of the process is comparable to 

or less than the relaxation time of the heat carriers, then the Fourier equation leads 

to erroneous results [3] and the DPL model should be taken into account. 

The dual phase lag equation can be written in the form [1-4] 
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 (3) 

where c is a volumetric specific heat and Q is a capacity of internal volumetric heat 

sources. The equation (3) must be supplemented by the appropriate boundary and 

initial conditions. 

The aim of the considerations presented in this paper is the application of the 

implicit FDM scheme for the approximate solution of the micro-scale 1D problem 

(heating of thin metal film) taking into account the presence of internal heat 

sources. The stability of the differential scheme is also discussed. In the final part 

of the paper, the example of numerical computations is also shown. 

2. Formulation of the problem 

Temperature field T(x, t) in the thin metal film (layer thickness is equal to L) 

subjected to the laser action is described here by the dual-phase lag equation in the 

form 

 
2 2 3

2 2 2

1
0 : τ + τ τq T q

T T T T Q
x L a a Q

t t x t x c t

∂ ∂ ∂ ∂ ∂ 
< < + = + + 

∂ ∂ ∂ ∂ ∂ ∂ 
 (4) 

where a = λ/c is a thermal diffusivity. The laser action can be taken into account by 

the introduction of internal source function defined as follows [4, 5] 

 

2

0 2

( 2 )β 1
( , ) exp β

π δ δ

p

p p

t tR x
Q Q x t I

t t

 −−
= = − − 

  

 (5) 

where I0 is the laser intensity, tp is the characteristic time of a laser pulse, δ is 

the absorption depth, R is the reflectivity of the irradiated surface and β = 4 ln2. 
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Introduction of an artificial heat source to the mathematical model of laser heat-

ing allows one to assume the no-flux boundary conditions on the surfaces limiting 

the domain considered 

 0 : (0, ) 0, : ( , ) 0x q t x L q L t= = = =  (6) 

The initial conditions are also known, meaning 

 

0

( , )
0: ( , 0) , ( )

p

t

T x t
t T x T w x

t
=

∂
= = =

∂
 (7) 

where Tp is the initial temperature of thin film and w(x) is the initial heating rate. 

3. Implicit scheme of the finite difference method 

The following approximate form of equation (4) is proposed 
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where h is the grid step and ∆t is the time step, j is the index of the central point of 

star, f − 2, f − 1, f denotes the successive time levels. The equation (8) can be writ-

ten in the form 
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 (9)  

where 
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( )
( ) ( )

2

22 2

2

2 22 2

2 τ ττ
,

2 τ 2τ ττ
, ,

T qT

T q qT

a t t h ta t
A B

h t h t

a t h ta
C D E

h t h t t

∆ ∆ + + ∆ +∆ +
= − =

∆ ∆

∆ + ∆ +

= − = = −
∆ ∆ ∆

 (10) 

In the case of boundary nodes, the following dependence (corresponding to the 

Neumann boundary condition) should be taken into account [6] 
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Thus, for the boundary node 0 one has (c.f. equation (6)) 
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and then 
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while for the boundary node n  
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and then 
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The system of equations (9), (13), (15) written in the form 
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can be solved using the Thomas algorithm.  

4. Stability of differential scheme 

The approximation error carried by θ
f

j at every node of space j and time f is as-

sumed to have a wave form with the wave number denoted by k and the amplitude 

by δ [1, 7]: 

 ( )θ δ exp , 1f f

j ik jh i=   = −   (17) 
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As time progresses, to assure convergence, the amplitude of the approximation er-

ror must be less than unity, i.e. θ 1
f

j <
. 

Introducing the formula (17) into equation (9), one has (the source function is omit-

ted here)  
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or 
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Using the Euler formulas, one obtains 
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and 

 
( )( ) ( )

2

2 2

τ
=

2 cos 2 τ 1 cos τ

q

T q

hE
D

A kh B a t t kh h t
− =

+ ∆ ∆ + − + ∆ +

 (23) 

According to [8], the absolute values of the roots of equation (21) are less than 

1 when 
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and 
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The inequality (25) should be substituted by two inequalities. The first of these is 
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meaning 
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One can see that the denominator of the fraction (28) is positive. Simultaneously, 

the numerator should be negative and the least favorable situation corresponds to 

sin 
2 
(kh/2) = 0 and then 

 ( )2 2
τ τ 0 0
q q

h h t t− ∆ + < → ∆ >  (29) 

The result corresponds to the uncoditional inequality. The second condition result-

ing from (25) is of the form 
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or 

 
( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2

τ 4 τ sin / 2 τ
0

4 τ sin / 2 τ

q T q

T q

h a t t kh h t

a t t kh h t

+ ∆ ∆ + + ∆ +

>

∆ ∆ + + ∆ +

 (31) 

One can see that this condition is always fulfilled.  

The inequality (26) can be written in the form 
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The first inequality resulting from (32) is of the form  

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2 2

2 2

4 τ sin / 2 2τ

4 τ sin / 2 τ

4 τ sin / 2 τ τ

4 τ sin / 2 τ

T q

T q

T q q

T q

a t kh h t

a t t kh h t

a t t kh h t h

a t t kh h t

∆ + ∆ +

− <

∆ ∆ + + ∆ +

∆ ∆ + + ∆ + +

∆ ∆ + + ∆ +

 (33) 

or (taking into account that the denominator of the fraction is positive) 
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and next 
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One can see that the above inequality is the uncoditional one. 

The second condition resulting from (32) is the following  

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2 2

2 2

4 τ sin / 2 2τ

4 τ sin / 2 τ

4 τ sin / 2 τ τ

4 τ sin / 2 τ

T q

T q

T q q

T q

a t kh h t

a t t kh h t

a t t kh h t h

a t t kh h t

∆ + ∆ +

− >

∆ ∆ + + ∆ +

∆ ∆ + + ∆ + +

−

∆ ∆ + + ∆ +

 (36) 

or (taking into account that the denominator of the fraction is positive) 
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Finally 

 ( ) ( )
2 2

4 sin / 2 0a t kh∆ >  (38) 

The condition (38) is unconditional. 

Summing up, the implicit scheme of the finite difference method for the dual-

phase lag equation is always stable. 
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5. Results of computations 

The thin metal film (gold) of thickness 100 nm is considered. The initial tempera-

ture Tp = 20
o
C, the initial heating rate w(x) = 0. Thermophysical parameters of the film 

are the following: λ = 315 W/(mK), c = 2.4897 MJ/(m
3 

K), τq = 8.5 ps, τT = 90 ps. In 

the formula (5): R = 0.93, I0 = 13.4 J/m
2
, tp = 0.1 ps, δ = 15.3 nm. The mesh step h = 1 

nm (n = 100), the time step ∆t = 0.0002 ps. 

In Figure 1, the temperature histories at the selected points from the domain con-

sidered are shown, while Figure 2 illustrates the temperature profiles for times 0.2, 

0.5, 1 and 3 ps. It should be noted that the results are practically the same as the ana-

lytical solution presented by Ciesielski in the paper [9]. 

 

 
       Fig. 1. Temperature histories at selected points                     Fig. 2. Temperature profiles for               

               different times 

 

Fig. 3. Temperature profiles for t = 1.2 ps and different time steps 
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Figure 3 illustrates the numerical solutions obtained for the different time steps. 

The first temperature profile for t = 1.2 ps has been found for the very small time 

interval. The second profile corresponds to ∆t = 0.01 ps, while the last (significant-

ly different from the previous) has been computed for ∆t = 0.05 ps. The time 

interval ∆t = 0.01 ps is longer than the critical one for the FDM explicit scheme 

[10]. In spite of this, the solution is of a good accuracy. In turn, from a qualitative 

point of view, the last solution is basically correct but inaccurate. In the case con-

sidered, the essential errors result from the fact that the source function Q is time-

dependent and for the large time step its approximation is a bit unclear. 

6. Conclusions 

In the paper, the problem of the implicit FDM scheme for a numerical solution of 

DPLE is discussed. The authors present in detail the numerical algorithm for the 1D 

task. Analysis of the 1D numerical solution results from the fact that there is a pos-

sibility to compare the results with an analytical solution [9]. The generalization of 

the algorithm presented for 2D or 3D problems is quite simple here. 

It should be pointed out that the implicit differential schemes are generally  

stable. Despite this, the stability problem has been analyzed in detail. In particular, 

the approach resulting from the von Neumann analysis application [1, 7] is presented. 

Such an approach leads to the conditions (inequalities) determining the critical  

value of ∆t. It was shown that the all inequalities limiting this value are uncondi-

tional. 

In the case of the task under consideration, the time step can be significantly in-

creased compared to the explicit FDM scheme. Unfortunately, too much of a time 

step leads to the incorrect numerical results (as shown in Figure 3). The test calcu-

lations were also carried out in the case of the Dirichlet condition given for x = 0 

under the assumption that Q = 0. In this type of problem, the time step can be sig-

nificantly extended in comparison to ∆t corresponding to the Neumann boundary 

conditions. 

It should be noted that the stability for the three-level scheme presented here 

can be also analyzed using the different approaches e.g. [11, 12]. 
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