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Abstract. In this study, a mathematical formulation for static bending analysis of a beam 

on a non-homogenous foundation is presented. The proposed method offers an accurate 

procedure for analysis and design of a beam resting on a varying soil bed. The Winkler 

foundation model is used and presented using discontinuous functions to account for the 

sudden change in the soil stiffness coefficient. The solution of the governing differential 

equation is then obtained using the Galerkin method with the help of approximation func-

tions that satisfy the boundary conditions. A systematic approach for setting the approxima-

tion functions for different support and soil conditions is suggested. The accuracy of the 

proposed method is verified through two numerical examples, and they showed an excellent 

agreement with the finite element method (FEM) and available literature results. 
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1. Introduction  

Bending analysis of beams or plates in elastic foundation is used extensively in 

engineering practice as far as soil-structure interaction is concerned. The backbone 

of this analysis is modelling the contact pressure between the structural member 

and the soil bed. Upon the assumed behavior of deformation of the soil under load-

ing, different models are presented to introduce the effect of the soil medium. 

Some of these models are the one parameter foundation or the Winkler model [1] 

and two parameters model such as Hetenyi [2] and Pasternak [3] where other 

springs interacting with the vertical ones are considered. 

Analysis of the beam on the elastic foundation model started early on by differ-

ent researchers [4-8]. Other types of foundation models have also been covered  

extensively such as a beam resting on a visco-elastic foundation, which has been 
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studied by Sonoda et al. [9] and a beam on nonlinear foundation has also been stud-

ied [10]. On the other hand, and in addition to the classical beam theory, some  

researchers went further to study the analysis of Timoshenko’s beam on an elastic 

foundation considering the effect of shear deformation as it was studied in [11-13]. 

Moreover, the computer coding, as a power of solving many engineering problems, 

has also been utilized in the analysis of the beam on an elastic foundation as it has 

been presented by Teodorue [14], who developed a new computer code based on 

FEM for a beam on an elastic foundation using Matlab software, making it easy to 

perform different kinds of problems with slight changes in the input data. 

In many engineering problems, it is very common to have discontinuity in the 

loading and the geometrical properties of the beam. Some researchers followed this 

trend as the study of Yavari et al. [15] for the problem of a beam with loading and 

geometrical discontinuity. The expression of loading conditions in terms of discon-

tinuous functions was also covered [16] making the treatment of different types of 

loads easy to handle, and the solution of the governing differential equation was 

observed using Wolfram Mathematica.  

In many construction sites, and without the excessive soil stabilization process, 

the soil bed is, most likely, found to have different mechanical properties such as 

bearing capacity and soil subgrade reaction. A comprehensive treatment is, there-

fore, required to make the soil bed more homogenous. Alternatively, it is very  

necessary to consider the non-homogeneity conditions of the soil bed in the design 

stage to account for the associated stresses. This phenomenon of a beam on non-

homogenous foundation was studied and presented [17, 18]. In addition, the design 

of spread foundation resting on a soil with geological anomaly has also been  

reported in 2014 [19]. In this latest study, the one dimensional model and the three-

dimensional model were studied, but in both cases the finite element was used for 

the analysis process.  

In this study, an Euler beam resting on a one-parameter foundation of varying 

subgrade reaction is presented. The use of discontinuous functions makes it easy to 

account for a sudden change of subgrade reaction and has a large variety of soil 

changes within the length of the beam but introduces a new form of difficulty to 

obtain an analytical solution. The governing differential equation is, therefore, 

solved using the Galerkin method with a set of approximation functions that satisfy 

the boundary conditions of the beam. These functions are to be selected using 

a suggested systematic approach that works for nearly any type of boundary condi-

tions. The results of the proposed method are found to be in an excellent agreement 

with FEM and the results developed in the literature. 

2. Mathematical formulation 

The governing differential equation of a beam on an elastic foundation is  

presented in the first part of this section. The Galerkin method and the suggested 



Galerkin method for bending analysis of beams on non-homogeneous foundation 

 

63

systematic approach for generation of the approximation functions are presented in 

the second and third parts of this section, respectively.  

2.1. The governing differential equation 

Consider a beam resting on the non-homogenous foundation as shown in Figure 

1. The governing differential equation of a beam resting on a foundation with soil 

stiffness coefficient ���� and subjected to load ���� is given by  
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Fig. 1. Typical beam on non-homogenous foundation model 

 

Four boundary conditions are required to solve Eq. (1), and they can be deter-

mined according to the physics of the problem. Other beam variables; bending 

moment 
, shear force �, and slope � can be found by the following expressions: 
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2.2. Solution formulation 

Let us select the origin of the �-coordinate to be at the center of the beam, and 

let �� 	 ��∅���� approximate the solution of the of the governing differential equa-

tion over the beam domain and �� are constants. 

Using the assumed approximated solution �� in Eq. (1) results in 

���
��

� ����
�� 	����� � ����

�� 	 ���� � 0, (2) 

 

where ���� is the residual. The unknown parameters can be found by setting the 

weighing average over the computational domain to zero. Leading to 
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where ����� is the weighing function and its selection depends on the selected 
method of the solution. Using the Galerkin method, ����� = ∅�(�) where ∅� satis-

fy all the boundary conditions. Eq. (3) can therefore be written as 
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Use of Eqs. (2) and (4) yields 
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Substitution of  �� = ��∅� into Eq. (5) and simplifying yields 
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which can be written in the following matrix form 

������ = ���, (7) 
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2.3. Selection of the approximation functions 

The selection procedure of the approximation functions satisfy all the four 

boundary conditions requiring a clear understanding of the physics of the beam 

problem under consideration. In this paper, some hints and examples of how to  

select these functions ∅� are given.  
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The elastic foundation considered here might take a different form of variation, 

including a sudden change in the soil subgrade reaction such as presence of geolog-

ical anomaly in the construction site. The beam can also be partially supported by 

the soil such as presence of void or a cavity zone under the beam. Modeling of 

these types of subgrade reactions can be expressed with the help of discontinuous 

functions such as Heaviside functions. Other forms of variations may include any 

form of continuous functions. The function that represents the subgrade reaction 

should be set prior to selection of the approximation functions ∅�.  

Since the approximation functions must satisfy the boundary conditions, let us 

start by the three beams shown in Figure 2. These three beams have the same zero 

deflection at their boundaries but differ in the other boundary conditions. This 

makes it possible to set a systematic approach to find the function ∅� for these 

three cases. Let us introduce a starting function �� to take the form 

�� 	 ��� 	�1 � 4 ��� 
�

! ��

�

���

 (8) 

which satisfies the zero deflection boundary conditions for the three shown cases. 

The remaining two boundary conditions for each case can be satisfied by forcing 

the function �� to satisfy the remaining two boundary conditions. This results in two 

equations and can be utilized to express two of the constants in terms of the others 

leading to a function �� satisfying all the boundary conditions and number of " � 1 

unknown constants ��.  

Organization of the resultant function �� and separating it into constants multi-

plied by functions of � leads to " � 1 constant multiplied by the same number of 

functions. Then renaming these functions to be ∅� and the constants to be �� for 

	�#, 1, 2,…	, &� where &	 	 	" � 1. It is noteworthy that ∅� satisfying all the 

boundary conditions and then Eq. (7) can be applied to solve for the unknown ��. 
 

   

Fig. 2. Three beams on non-homogenous foundations and different boundary conditions 

One more example is the free-free beam shown in Figure 3. In this problem, due 

to symmetrical loading and the foundation condition, it is known, as a priori, that 

the solution will be symmetric, and the beam will have some deflection at the ends. 

The starting function �� can, therefore, take the form 
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�� 	 �
� � ��� 	�1 � 4 ��� 
�

!���

�

���
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where the constant �
� to account for the constant deflection at the ends of the 

beam. The total number of constants in the above equation is " � 2. Due to the 

symmetry property, in this problem, forcing the function �� to satisfy four boundary 

conditions results, in fact, in only two equations and, therefore, expressing only 

two constants in terms of others. Again, organizing the remaining constants and 

their accompanying functions yields in " number of constants and a similar num-

ber of functions. Then, renaming these functions to be ∅� and the constants to be  

�� for 	�#, 1, 2, …	, &� and & 	 ".  

 

 

Fig. 3. Free-free beam on non-homogenous symmetrical foundation and subjected to 

symmetric loading 

A similar approach can be used to develop approximation functions ∅� for dif-

ferent beam problems. A convergence process is required to decide on the proper 

number of terms ", of the starting function ��, at which the polynomial should be 

truncated. The convergence procedure has been presented as shown in the next sec-

tion. 

The aforementioned procedure of finding the approximation functions can easi-

ly be programed in a small computer code. Then, the obtained approximation func-

tions can be used in Eq. (7) to solve for the unknown variables �� . The complete 

solution �� 	 ��∅� can then be found by summing over the dummy index #. Other 

beam variables such as shear force and bending moment can be found using the ob-

tained deflection expression as explained earlier.  

3. Numerical examples 

Application of the developed method has been explained through two numerical 

examples. The accuracy of the obtained results is verified with those obtained by 

FEM and the available results in the literature. 
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3.1. Example 1: A foundation of a load bearing wall of finite length 

constructed on soil of non-homogenous subgrade reaction 

A load bearing wall of total constant uniformly distributed load of  � = 100	kN/m resting on non-homogenous foundation having a subgrade reaction  at the outer quarters and � at the middle part as shown in Figure 4. The numeri-
cal value of the subgrade reaction for the outer quarters per unit length of the foun-

dation is  = 10,000	kN/(m�), and the values of � that control the subgrade  
reaction of the middle part are taken to be 3, 2, 1, and 0.75. The elastic modulus of 

the material � = 25	GPa. 
 

 
Fig. 4. A foundation of load bearing wall on non-homogenous subgrade reaction 

The subgrade reaction modulus, in this problem, can be expressed using the dis-

continuous function to take the form 

��� =  + �� − 1�	��� + 1.5�− �� − 1�	��� − 1.5�, 
where the discontinuous function � is defined by 

��� − �� = �1		� > �
0	� < �  

A proper way of modeling this structural member is a free-free beam on non-

homogenous foundation model. As explained in Subsection 2.3, Eq. (9) has been 

used in this problem as a starting point to find the function ∅�. A convergence 

study to decide on the proper number of terms �, after which the expression given 
by Eq. (9) is truncated, has been done for all values of �. However, for simplicity, 
the convergence results have been presented only for the highest and lowest select-

ed values of �. From the convergence study, only six terms are found to be enough 
to truncate the number of terms �. 
For the purpose of evaluating the accuracy of the proposed method, the results 

are compared with the FEM prepared model. To reduce the information in the fig-

ures, the FEM results are shown for only two values of � (3 and 0.75). Figures 5 
and 6 show an excellent agreement between the proposed Galerkin method and 

FEM obtained results for the shown two models. The results of the shear force 

(Fig. 7) show a moderately good agreement with FEM but it is not as excellent as 

the deflection and bending moment. This less accuracy is due to higher derivatives 



A.E.S. Musa 68 

associated with the shear force, which makes the shear force results have the worst 

agreement with FEM as compared to deflection and bending moment, and also 

slower convergence rate as shown in Table 1. 

 

 
Fig. 5. The deflection of the free-free beam under symmetrically non-homogenous  

foundation model 

Figure 5 confirms that a free-free beam subjected to constant load and resting on 

a soil of homogenous subgrade reaction (� = 1) portrays a constant deflection 

equal to �/ leading, therefore, to zero bending moment and shear force as shown 
in Figures 6 and 7. The bending and shear stresses, however, appear with the varia-

tion of subgrade reaction along the length of the beam. As a priori construction, the 

deflection reduces with reduction of subgrade reaction. The results for higher val-

ues of � show a low deflection at center of the beam and more deflection as going 
to the ends of the beam leading to tensile bending stress at the top of the beam. The 

negative bending moment resulting from higher subgrade reaction at the middle 

(� > 1) as shown in Figure 6 requires reinforcing the top of the beam to account 
for the resulting tensile stress. Furthermore, the direction of bending moment re-

verses its direction for � < 1 leading to a bottom reinforcement requirement with 

an amount proportional to the reduction of �. 
 

 

 

Fig. 6. The bending moment of the free-free beam under symmetrically non-homogenous  

foundation model 
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Fig. 7. The shear force of the free-free beam under symmetrically non-homogenous  

foundation model 

Table 1 

Convergence study of Example 1 

� � = 3 � = 0.75 

���� 

(10��) 

���� �
��

�

�

 ���� ���� �
��

�

�

 

1 3.33 0 0.00 7.62 0.00 0.00 

2 2.78 ‒69.47 34.73 7.94 23.20 ‒11.60 

3 2.77 ‒73.10 39.12 7.94 24.81 ‒13.51 

4 2.77 ‒71.40 42.50 7.94 24.42 ‒14.25 

5 2.77 ‒70.28 46.73 7.94 24.11 ‒15.42 

6 2.77 ‒70.15 46.82 7.94 24.07 ‒15.45 

3.2. Example 2: A free-free beam of a partially distributed load resting  

on non-homogenous foundation 

A free-free beam subjected to a partially distributed load at its middle third and 

resting on a non-homogenous foundation as shown in Figure 8. The main purpose 

of presenting this example is to verify the proposed method with one of the availa-

ble works in the literature as presented by Matsuda and Sakiyama [18], which was 

developed based on an integral equation and numerical domain integral. The solu-

tion is obtained as a function of the applied load �, the stiffness of the beam ��, 
and the length of the beam �.  

 

 

Fig. 8. A free-free beam under non-homogenous foundation model and subjected to a partially  

distributed load 
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The subgrade reaction modulus, in this problem, can be expressed to take the 

form 

��� = � + �� − ������, 
where again the discontinuous function � is defined by 

���� =  1		� > 0

0	� < 0
 

A free-free beam problem shown in Figure 8 has asymmetrically arranged sub-

grade reactions of � = 1000 and � has assigned three values as shown in the 
figure. This introduces a new form of difficulty in guessing the proper function ∅�. 

Therefore, and blindly, a polynomial has been used as a starting function to be  

�! = ∑ #� 	��	
�
� . 

Again forcing �! to satisfy the four boundary conditions and following the same 
approach to end up with a � matrix of size (� − 3) 	× (� − 3). A convergence 

study for selecting the proper number of terms � has been studied for the three 
values of � and presented in Table 2. It is clear from the table that � = 12 can be 

a practical value to truncate the number of terms � for the three values of subgrade 
reaction. 

Figure 9 and 10 show the deflection and bending moment along the beam for 

the three values of � in addition to the comparison with the available results in the 
literature. The comparison shows an excellent agreement between each two coun-

terparts for both the deflection and bending moment.  

Table 2 

Convergence study of Example 2 

� 

��	= 2000 ��	= 1000 ��	= 100 

���� 

(10��) 

���� 

(10��) 

���� 

(10��) 

���� 

(10��) 

���� 

(10��) 

���� 

(10��) 

1 0.242 0.000 0.333 0.000 1.217 0.000 

5 0.242 0.000 0.333 0.000 1.217 0.000 

6 0.440 5.980 0.617 8.209 1.334 6.448 

7 0.447 6.121 0.617 8.209 1.380 7.016 

8 0.468 8.450 0.640 10.709 1.398 9.201 

9 0.469 8.462 0.640 10.709 1.400 9.231 

10 0.469 8.948 0.640 11.222 1.402 9.655 

11 0.471 8.943 0.640 11.222 1.402 9.660 

12 0.471 8.929 0.641 11.209 1.402 9.661 

13 0.471 8.929 0.641 11.209 1.402 9.661 
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Fig. 9.  The deflection a free-free beam under non-homogenous foundation model  

and subjected to a partially distributed load 

 

Fig. 10.  The bending moment for a free-free beam under non-homogenous foundation model  

and subjected to a partially distributed load 

4. Conclusions 

A simple solution has been developed for bending analysis of beams resting on 

a non-homogenous foundation. The solution is based on the Galerkin method and 

a systematic approach has been described to generate the required set of approxi-

mation functions for different beam problems. The accuracy of the proposed  

method has been verified through two numerical examples of a free-free beam, 

which are difficult to be solved analytically, and the results proved an excellent 

agreement with FEM and the available literature results. The proposed method can 

easily be applied to beams of different supports and soil conditions with no further 

efforts. The proposed method is of interest for structural engineers who deal with 

structural design of foundations, especially in construction sites where the soil 

properties vary considerably. 
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