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Abstract. In this paper we consider the stochastic diffusion process with semi-Markov
switchings in an averaging scheme. We present results and conditions on convergence to
the classic diffusion process, in case with semi-Markov process perturbation is uniformly
ergodic. We used small parameter scheme to get the main result.
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1. Introduction

Due to the wide use of stochastic diffusion processes, stability problem arose,
especially conditions of stability and control of such systems. The paper [1] con-
tains sufficient conditions of stability of stochastic systems via Lyapunov function
properties and obtained estimates of large deviations of linear diffusion systems.
Problems of optimal control of diffusion processes are described by stochastic dif-
ferential equations with acceptable control of dedicated work [2]. This generator
uses a diffusion process, Markov property and martingale characterization of the
process to test the functions of the Lyapunov type.

On the other hand, asymptotic behavior is important of diffusion processes that
are considered in [3] and [4]. For conditions of weak convergence of random proc-
esses in the works [5-7] Korolyuk used method of small parameter and singular
perturbation problem solution for the construction of the generator limiting proc-
ess. This method is used in the schemes averaging diffusion approximation and as-
ymptotically small diffusion. In particular in the work [6] Korolyuk and Limnios
examined cases of the random evolution of Markov and semi-Markov switching.

Construction of semi-Markov processes and investigation of asymptotic proper-
ties of random processes with semi-Markov switching are devoted [8-11].
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The initial process is weakly convergent to the solution of the diffusion equation
(to the diffusion process). Such convergence is obtained by using averaging scheme
[10,12].

Note [13] work which analyzed the asymptotic properties of semi-Markov proc-
esses with a linearly perturbed operator maintainer Markov process through the
semi-group property. The latest results were developed in [14]. Classification of
solving of the singular perturbation problem for random processes with semi-Markov
switching is described at [6] and [15] using of compensating the operator [16].
Through compensating the operator [17] one could obtain sufficient conditions for
stability of random evolution of semi-Markov switching to the diffusion process
in the balance sheet and the scheme averaging [18].

The results of these studies have been used in various applications [19-22].

2. Problem

In this paper, we consider dynamical system with semi-Markov switching using
a small series parameter. x(¢),f > 0, is a semi-Markov process in the standard phase
space of states (X,E), generated by renewal Markov process x,,7,,n >0, defined
by a semi-Markov kernel:

O(t,x, B) = P(x, B)G (1),
where the stochastic kernel

P(x,B)=P{x,,,€B

x,=x},xeE,

defines an embedded Markov chain x,=x(z,) at renewal moments:

Tn =Z@k,n20,1'0=0,

k=1

with intervals 6,,, =1,,,—7, between renewal moments. 6, are defined by the
distribution functions

G,(t)=P{0,, <t

x,x} = P{6,.<t}.
A semi-Markov process is defined by the relation
x(1) =X,y =0,
where the counting process v(¢) is defined by the formula:
v(t)=max{n:7,<t},t>0.

We consider a semi-Markov process x(¢),7 >0, that is regular and uniformly
ergodic with stationary distribution 7z(B),B€E:

7(dx) = p(dx)m(x)/m.
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Here p(B),B<E, is a stationary distribution of the Markov chain attached.
Diffusion process u°(f)e R’ in an averaging scheme with a small parameter
& > 0 defined by stochastic differential equation

i’ (1) = C(ug(t);x(ijjdt + ou () dwin), (1)
&

where: u®(¢),t >0, - random evolution in a diffusion process (1) [6, 9, 15, 16];
x(¢),t >0, - semi-Markov process [6, 8, 13, 14];
w(t) - Wiener process [3-5].

Semigroup C;, (x),t>0,s>0,x € X, accompanying systems

du (£) = Clu (£); x(t))dt + o (e, (£))dw(t),u,(0) = u, )
defined by the relation
Cl ()p(u) = p(u, (t +9)),u, () = u, 3)
where
u (t+s)=u(t+s,u)u,(t)=u.(t,u). (@))]

and (4) is semigroup property.
Generating operator C(x) semigroup C;, (x) is defined by form

Cx)o(u) = C(u; x)p'(u) +%02(u)¢"(u), )

where g(u) e C*(R?).

3. Main result

Theorem 1. Let regression function C(u;x) and variation o(u) satisfy the follow-
ing conditions:

Cl: C(uy) e C*(RY),

C2: o(u)e C*(RY),

C3: the distribution functions G, (t),G_x(t) =1-G,(t),t 2 0,x € X, satisfy the Cramer
condition uniformly in x € X,

0

sup.. [ "G, (0)dt < H <-+o0,h>0.

0

Then the solution u®(t),t >0, of the equation (1) converges weakly to the limit
diffusion process £(t),t 20, as € — 0, which is defined by the generator
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Lo(u) = Cu)p'(u) + % & ()" (a0,
where

C(u)= J' C(u; x)(dx), p(u) e C*(RD).
X

4. Limit operator properties
We introduce advanced Markov renewal process (MRP) [6], by given sequence:
u, =u’(7,),x, =x°(7,),7, = €7, (6)

Where 7, = z&n,n >0,7,=0, means times of renewal in semi-Markov process
k=1
x(2),t =0, [6] determined by the distribution function of the time spent in the state x.
Definition 1. /6, 17] Compensating operator advanced MRP (6) is defined by
the form

Li (), x,0) = & [E{@(ty 15 X1 Tty = X, = X,7, = 1} = 9, x,0)] /g (x). (7)

Lemma 1. Compensating operator (7) on test-functions @(u,x) is defined by
formula:

L (0)p(u,x) =& q(x)| [ G.(ds)C,,(x) [ PCx.d)p(u. y) — . x) |, (8)
0 X
where
1 e
q(x)=@,g(x>=E9x= j G, (1)dt.

Proof. Given point u? we have [6, 16, 18]:

Ep(uf .x) = ECl,p, ()0, x7) = [ G (ds)C]. o (x) [ P(x dy)p(a, ).
0 X

Here we have (8).
Lemma 2. Compensating operator L; (x) is defined by form

L (00, x) =2 Q. x) + £ GZy (x) ~ 1)@y p(u. ). ©)

where GZy(x) = j G, (ds)C!, . (x).
0
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Proof. From (8) we have
L ()p(u,x) = 87'q(x) [ G,(ds)C/, () [ PCx.d)p(t )~ (a1, %) | =
0 X
&q(0) [ PCx,dv)p(u, ) — (i, %))+
X

£4(0)] 6@ €L ()~ 1]] PG ),
0 X

Then we obtain (9).
Lemma 3. Compensating operator L7 (x) has the asymptotic representation

L ()p(u,x) = £ Qp(u, x) + 6 (x) Pp(u, x), (10)
L (0)(u,x) = &~ Q(u, X) + C(x)p(u, X) + £65 (x)p(, X), (1)
where
0F () = g(x)C()[ G, ()C1, 5 (x)ds,
0
05 (x) = g(x)(C(x))* G/ (%),
and
Gy (x) = TG_X(Z) (5)CL, 5 (X)ds,
0
where

6.7 5)=[G."

Proof. We have semigroup equation C,, (x),1>0,x€ X,
dC!, 5(x) = C(x)C}, o (x)ds.
Integrating by parts we have:

u=Clo(x)  dv=G(ds)

Gf -1=|G.(d sz+av —1)|= G.
,O(X) -([ ( S)[ (X) ] du=8C(X)C;+as(x)dS v:—Gx(S)

G )CL a0 -1][ + 8TG_x(s>C(x>C;m(x>ds.
0
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Given the Cramer condition we have:
G!y(¥)~ 1 = £[ G ()C(X)C/, 5 (x)ds = £C(x)[ G, (5)C],  (x)ds.
0 0

Hence we have (10).
For

G1(%) = [ G(ds)C], (%)
0

integrating by parts we have:

u=Cj, (%) dv=G,(ds)

G/(x) = [ G (ds)C]. (%) = t o |-
0 du=C(x)C,,(x)ds v=—G, "(s)

€67 ) +2] G (CEICL 0 (s =m()] +2C)[ G, (5)CLn (e
0 0

Thus we have
G/ (x) =m(x)] + £C(x)G/,(x).

Hence:

C(NG/(x)=C (X)[M(X)l +&£C(x)G}, (X)]= m(x)C(x) +&(C(x))* G/, (%),

and
L, (x)p(u,x) =
£7'Q0(u, %) + g(0)|m(x)C(x) + £(C(x)) G () (o, x) =
£7'Qp(u, x) + CCOP(u, X)+ £g(x)C(x)) G (X)p(1t, ) =
£7Qo(u, x) + C(x)p(u, x) + £65 (x)p(u, x),
where

05 (1) (u,x) = ¢()NC(x))* G (X)p(u, x).

Lemma 4. Compensating operator L,(x) has the asymptotic representation in the
Sfunction ¢°(u,x)= @)+ @, (u,x)

L (x)p° (u,x) = &' Qp(u) + Q1 (u, x) + C(x)p(u) + £6° (x)p(u1),

where

0°()p(u) = 67 (x) Py (u, x) + 05 (x)(u).



The limit properties diffusion process in a semi-Markov environment 11

Proof. We have

L(0)[p) + £, (u,x)]=
ele0+ 67 ) Ppy (u.x) + [£7Q + C(x) + 205 () o) =
00, (u,x) + £60 (x) Py (u, x) + £ ' Q(u) + C(x)p(u) + £65 (X)p(u).

Lemma 5. The given singular perturbation problem [6, 15, 19], limit generator L
is defined by formula:

Lot =Cag @) +5 0 "),
Proof. From [6, 19] ¢(u) € N, we have
Q¢(u)=0.
Using formula from lemma 3 we have:
09, (u, x) + C(x)p(u) = Lp(u),

Q¢ (u,x) = (C(x) - L)p(u) = L(x)p(u),
where
L(x)=C(x)— L.
Hence

@1 (u, x) = Ry L(x)p(x). (12)

Now using statement [6] we get lemma 5.

5. Proof of theorem

Use the following theorem
Theorem. [6] (Pattern limit theorem) If the following conditions holds:
(C1): The family of embedded Markov renewal process &, x,t >0, >0, is rela-
tively compact.

(C2): There exists a family of test functions ¢° (u,x) in C*(R? x E), such that
lim ¢* (u, ) = (),

uniformly on u, x.
(C3): The following convergence holds

lin}) L ¢° (u,x) = Lo(u),
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uniformly on u,x. The family of functions L' ¢°, & >0 is uniformly bounded and
Lf¢p° and Lo belongto C*(R? xE).
(C4): The convergence of the initial values holds, that is,

P
56:_)5098_)05

and

sup,..o £| &5 < C < +o0.

Then the weak convergence &= &, — 0, takes place. The limit process
&, ,t >0, with generator L and is characterized by the martingale:

#=0(8)- [ Lp(&)ds.1>0.

0

Proof of theorem 1.

Performance conditions (C1) arise from [17]. Performance conditions (C2) arise
from ¢ (u,x)=@(u)+ep,(u,x) and (12). Performance conditions (C3) arise
from lemma 3 and lemma 5. It must show boundaries of 6°(x)@(u). Consider

7 ()1 (u, x).
OF ()1 (u, x) = PR, L(x)p(u).

With bounded operators P, R, [3, 5] and sleekness by function ¢(u) followed
the limited & (x)¢,(u, x). This gives us bound of 5 (x)@(u).

Performance conditions (C4) arise from [15].

Thus we get the assertion of Theorem 1.
Corollary 1. The diffusion process & (t),t =0, is the solution of the stochastic
differential equation:

dg (1) =C(E () +a (S (0)dw(D).

The same result can be obtained for the similar process:
Theorem 2. Let regression function C(u, x) and variation o(u, x) satisfy the follow-
ing conditions:
Cl: C(u,)e C*(RY),
C2: o(u,) e C*(RY),
C3: the distribution functions G, (t),G_x(t) =1-G,(t),t 2 0,x € X, satisfy the Cramer
condition uniformly in x € X,

0

SUP e x Ieh’G_x(t)dt <H <+40,h>0.
0
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Then the solution u®(t),t >0, of the equation

du® () = C(u‘f (0): x(gjdt + o{ue (0): x(éndw(z‘),

converges weakly to the limit diffusion process ¢ (t),t >0, as € —> 0, which is
defined by the generator

L(p(u)=C<u)¢'(u>+%az(u>¢>”(u>,
where

o’ (u) = I o2 (u; x)m(dx), 02 (u; x) =0~ (u; x) o (u; X).
X

6. Conclusions

Sufficient conditions were obtained for the convergence of the diffusion process
with semi-Markov switching to the classical diffusion process. Two cases were
considered here: when the variance is independent of the semi-Markov switching
process and when the variance depends on this process. In order to obtain results,
the distribution properties are crucial, especially Cramer’s condition. Limit process
is an asymptotic approximation of the initial process in the sense of a probabilistic
approach. The converge conditions are simple and their determination can be im-
plemented in a computer program. This result can be used in the Poisson Approxi-
mation scheme [21-23] for the diffusion process with semi-Markov switching.
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