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Abstract. The numerical analysis of thermal damage process proceeding in biological 

tissue during laser irradiation is presented. Heat transfer in the tissue is assumed to be tran-

sient and two-dimensional. The internal heat source resulting from the laser irradiation 

based on the solution of the diffusion equation is taken into account. The tissue is regarded 

as a homogeneous domain with perfusion coefficient and effective scattering coefficient 

treated as dependent on tissue injury. At the stage of numerical realization, the boundary 

element method and the finite difference method have been used. In the final part of the 

paper the results of computations are shown. 
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1. Introduction 

It is known that biological tissues are characterized by a strong scattering and 

weak absorption in the so-called therapeutic window (wavelengths 650÷1300 nm) 

[1-4]. Because of this, to describe the light propagation in biological tissues the 

different mathematical models can be taken into account. One of them is the trans-

port theory which concerns the transport of light through scattering and absorbing 

media. In this case the radiative transport equation should be considered [4-6]. 

To solve this equation, different approaches are used: the modifications of discrete 

ordinates method, the statistical Monte Carlo method or the optical diffusion 

equation [2, 5, 7].  

Interactions between tissue and the laser beam often lead to the temperature 

elevation that can cause irreversible damage of the tissue. This in turn could cause 

the alteration of thermophysical and optical properties of tissue, e.g the perfusion 

coefficient is often treated as the main indicator of tissue injury. In addition, 
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an increase of scattering due to tissue denaturation has a visual effect of tissue 

“whitening”. Consequently, parameters applied in mathematical models of heat 

transfer in biological tissue domain can be regarded as tissue damage-dependent 

[8-11].  

The most popular model of the tissue damage process is the Arrhenius injury 

integral [12-16]. This approach basically refers only to the irreversible tissue dam-

age, however, there are models that allow one to take into account the withdrawal 

of tissue injury in the case of temporary, small local increasing of temperature [17]. 

The purpose of this paper is to analyze the phenomena occurring in the laser-

treated biological tissue. The analysis is based on the Pennes bioheat transfer equa-

tion which is still the most frequent used model to determine the temperature 

distribution in biological tissues [9, 10, 13, 18], while the light distribution in bio-

logical tissue is estimated on the base of the optical diffusion equation [4, 5, 16]. 

The degree of tissue damage is calculated by using of Arrhenius scheme with 

TTIW algorithm and two parameters of the tissue are assumed to be dependent 

on the injury integral (perfusion coefficient and the effective scattering coefficient). 

2. Governing equations 

The transient heat transfer in the 2D homogeneous biological tissue domain of 

rectangular shape Ω (Fig. 1) is described by the Pennes bioheat transfer equation 

with adequate boundary-initial conditions [11, 18] 
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where λ [Wm
−1

K
−1

] is the thermal conductivity, c [Jm
−3

K
−1

] is the volumetric 

specific heat, T = T(x, t) is the temperature while &T denotes its time derivative. 

The components Qperf, Qlas and Qmet [Wm
−3

] are the internal source functions 

containing information connected with the perfusion, metabolism and laser irradia-

tion. In boundary-initial conditions, α [Wm
−2

K
−1

] is the convective heat transfer 

coefficient, Tamb is the temperature of surroundings while Tp denotes the initial 

distribution of temperature. 

The metabolic heat source Qmet [Wm
–3

] is assumed as a constant value while 

the perfusion heat source is described by the formula 

 [ ]( , ) ( ) ( , )= Ψ −x xperf B BQ t c w T T t  (2) 

where cB [Jm
–3

K
–1

] is the volumetric specific heat of blood, TB corresponds to the 

arterial temperature while w(Ψ) [s
–1

] is the perfusion coefficient defined as [8, 9, 17] 
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where w0 is the initial perfusion coefficient while Ψ denotes the Arrhenius injury 

integral, in form [9, 10, 12] 
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where R [J mole
–1

K
–1

] is the universal gas constant, E [J mole
–1

] is the activation 

energy, P [s
−1

] is the pre-exponential factor. A value of integral Ψ(x) = 1 corresponds 

to a 63% probability of cell death at a specific point x, while Ψ(x) = 4.6 corresponds 

to a 99% probability of cell death at this point. Both values are used as the necrosis 

criteria. 
 

 

Fig. 1. The domain considered 

According to the values of formula (4), the values of coefficients for the interval 

from 0 to 0.1 in equation (3) respond to the initial increase of the perfusion coeffi-

cient caused by vasodilatation, while values of coefficients for the interval 0.1 

to 1 correspond to the decrease of the perfusion during the damage process of the 

vascular network [9]. 

The main assumption of the Arrhenius formula is that the damage of tissue is 

irreversible, so even in the case of very little rise and lowering of temperature 

the tissue remain damaged. On the other hand, at the initial tissue heating, when 

the temperature is moderate (i.e. between 37°C and 45÷55°C), the blood vessels 

in the tissue become dilated without being thermally damaged. Because of this, 

the TTIW algorithm (thermal tissue injury withdrawal algorithm) has been applied 

which allows to take into account the possibility of withdrawal of tissue injury 

when the thermal impulse is ceased [17]. 
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The TTIW algorithm requires the assumption of a certain value Ψrec which 

is defined as recovery threshold. The withdrawal of tissue damage is possible only 

for those points of the domain considered in which the value of injury coefficient Ψ 

is below Ψrec. If the tissue damage at the point x ∈ Ω achieves the value greater 

than Ψrec then the injury becomes irreversible, so, it will be calculated on the base 

of the Arrhenius formula (4). The full description of the TTIW algorithm could be 

found in [17]. 

The thermal damage of the tissue also affects the optical properties of the tissue. 

During the process of coagulation, the changes in tissues lead to higher scattering 

while the absorption remains the same, thus in the current work, the effective 

scattering coefficient of tissue is described as [10] 

 ( ) exp( ) [1 exp( )]′ ′ ′Ψ = −Ψ + − −Ψ
s s nat s den
µ µ µ  (5) 

where µ′s nat and µ′s den [cm
−1

] denote the effective scattering coefficient for native 

and destructed (denaturated) tissue, respectively. 

The source function Qlas (c.f. equation (1)) associated with the laser heating is 

defined as follows [2] 

 ( , ) [ ( ) ( )] ( )= +x x x
las a c d

Q t p tµ φ φ  (6) 

where µa [m
–1

] is the absorption coefficient, φc and φd are the collimated and dif-

fuse parts of the total light fluence rate, respectively while p(t) is the function equal 

to 1 when the laser is on and equal to 0 when the laser is off. 

The collimated fluence rate part φc is determined on the basis of the Beer- 

-Lambert law, namely [2, 11, 16] 
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where φ0 [Wm
–2

] is the surface irradiance of laser, d is the diameter of laser beam 

and µ′t [m
–1

] is the attenuation coefficient given as 

 ( ) ( )′ ′Ψ = + Ψ
t a s
µ µ µ  (8) 

To determine the diffuse fluence rate φd the optical diffusion equation should be 

solved [1-3] 
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where n is the outward unit normal vector. 
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3. Method of solution  

At the stage of numerical realization, the 1
st
 scheme of the boundary element 

method (BEM) for 2D transient heat diffusion has been used while the optical 

diffusion equation has been solved by the finite difference method (FDM). 

For the transient heat diffusion problem, for the time grid with constant step ∆t, 

the boundary integral equation corresponding to transition t
 f–1

 → t
 f
 is of the form 

 

1

1

1

*

* * 1 1

*

1
( ) ( , ) ( , , , ) ( , )d d

1
( , , , ) ( , )d d ( , , , ) ( , )d

1
( , ) ( , , , )d d

−

−

−

Γ

− −

Γ Ω

Ω

+ Γ =

= Γ + Ω+

+ Ω

∫ ∫

∫ ∫ ∫∫

∫ ∫∫

ξ x ξ x x

ξ x x ξ x x

x ξ x

f

f

f

f

f

f

t

f f

t

t

f f f f

t

t

f
V

t

B T t T t t q t t
c

q t t T t t T t t T t
c

Q t T t t t
c

 (10) 

where QV denotes the sum of the internal heat function associated with the perfu-

sion, metabolism and laser irradiation (c.f. equation (1)), T
∗

 is the fundamental 

solution 
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where r is the distance from the point under consideration x to the observation 

point ξ, a = λ/c, while 

 * *
( , , , ) ( , , , )n, ( , ) ( , )n= − ∇ = − ∇ξ x ξ x x xf f

q t t T t t q t T tλ λ  (12) 

and B(ξ) is the coefficient from the interval (0, 1). 

In this paper, the constant boundary element has been used. Details concerning 

numerical realization of the BEM can be found, among others, in [11, 19-21]. 

In order to determine the source function Qlas at the internal nodes (c.f. equation 

(1)), at each time step additionally the optical diffusion equation (9) must be 

solved. As it was mentioned previously, it is done by using the finite difference 

method. The global and local numeration of the nodes is shown in Figure 2. 

The difference equation for the central node of stencil can be written in the form 
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where R0e are resistances between the central node and remaining nodes of the 

stencil - Figure 2.  
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More details concerning numerical realization of the FDM, can be found in 

[16, 22, 23]. 
 

 

Fig. 2. Five-point stencil and discretization 

4. Results of computations 

The aim of the research was to analyse the destructive changes in the tissue 

domain of the size of 4×4 cm during laser irradiation (c.f. Fig. 1). The interior of 

the domain has been divided into 1600 internal constant cells while the external 

boundary into 160 constant elements.  

The most commonly used types of laser impulses in medical treatments are 

multiple impulses of duration ranging from a few to several dozen seconds with 

appropriate pauses between subsequent impulses. The purpose of this is not to 

overheat, and thus not to cause thermal damage to healthy tissue adjacent to 

the treated area. Thermography techniques are also used for similar reasons. They 

allow one to maintain the tissue surface temperature in a certain range and to 

control the laser action during the medical procedure [1, 5, 10, 13]. Because of this, 

in current paper, the two cases of laser irradiation were taken under consideration. 

In example 1, the tissue is subjected to multiple laser impulse (100 seconds on and 

100 seconds off) while in example 2 the laser action depends on the tissue surface 

temperature, meaning the laser is on when the temperature drop below Tctrl – ∆Tctrl 

and off when the temperature reaches above Tctrl + ∆Tctrl. 

In computations, the following values of parameters have been assumed: 

λ  =  0.609  Wm
−1

K
−1

, c  =  4.18  MJm
−3

K
−1

, w0  =  0.00125  s
–1

, µa  =  0.4  cm
–1

, 

µ′s nat  =  10  cm
–1

, µ′s den  =  40  cm
–1

, Qmet  =  245  Wm
–3

, cB  =  3.9962  MJm
−3

K
−1

, 

TB  =  37°C, P  =  3.1×10
98

  s
–1

, E  =  6.27×10
5
  Jmole

–1
, R  =  8.314  Jmole

–1
K

–1
, 

Ψrec = 0.05, ϕ0 = 30 Wcm
–2

, d = 2 mm, α = 10 Wm
–2

K
–1

, Tamb = 20°C, Tp = 37°C, 

Tctrl ± ∆Tctrl = 70±3°C, ∆t = 1 s [10, 11, 17]. 

The optical parameters of tissue (µa, µ′s nat and µ′s den), which were assumed 

in simulations, are typical for near-IR irradiation on soft tissue like e.g. Nd:YAG 

laser of 1064 nm which is used for prostate coagulation.  
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The results containing information about courses in time are presented in points 

N0(0,0), N1(0.0045,0), N2(0.0065,0), N3(0.0085,0). 

In Figure 3, distribution of the diffuse fluence rate obtained on the basis of the 

optical diffusion equation (9) is shown. It is visible that initially the area of scatter-

ing is larger, although the values of φd are lower than they are in the end of the 

simulation. The results are presented for example 1 only, but it should be pointed 

out that in example 2 they were almost the same. 

 

 
Fig. 3. Distribution of diffuse fluence rate ϕd [kWm–2] for 0 and 500 s (example 1) 

Figures 4 and 5 are associated with tissue temperature. In Figure 4, the tempera-

ture history for the point N0 and both examples analyzed are presented. For multi-

ple laser impulse (example 1), it is visible that for each of the subsequent laser’s 

cycle (on/off), the reached temperatures are higher and higher. Lower temperatures 

obtained for the example 2 are also visible in Figure 5. 

 

 
Fig. 4. Tissue temperature history at the node N0 (examples 1 and 2) 
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Fig. 5. Temperature distribution [°C], time 100, 300, 500 s (up: example 1, down: example 2) 

 
Fig. 6. Arrhenius injury integral history at nodes N1, N2, N3 (examples 1 and 2) 
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In Figure 6, the time courses of the Arrhenius integral. The decreases of the 

Arrhenius integral value resulting from the application of the TTIW algorithm were 

noticed: for example 1 at point N2 while for example 2 at point N1. In example 2, 

they are not big, but they are still visible. 

Figure 7 shows the distribution of the Arrhenius injury integral for times 100, 

300 and 500 s for both examples. The differences are visible mainly at the early 

stage of the tissue damage process. 

 

 
Fig. 7. Arrhenius injury integral distribution, time 100, 300, 500 s 

(up: example 1, down: example 2) 

Obviously, all changes in the value of the Arrhenius integral have reflection 

in changes of tissue damage-dependent parameters assumed in the current model, 

i.e. perfusion coefficient and effective scattering coefficient. The distribution of 

these parameters is presented in the next two figures. 
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In Figure 8, the grey zone refers to the zone in which the value of the perfusion 

coefficient is lowered while the check zone is the so-called hyperemic ring - the area 

in which the value of perfusion is raised. As it can be seen, this zone is almost 

adjacent to the coagulation zone. In Figure 9, the distribution of the effective scat-

tering coefficient is presented. 

In Figure 10, the information about expansion of tissue damage is presented. 

The number of elements on the scale of the figure means that tissue injury is 

treated as a sum of element on which the injury integral is above 0.01, so this value 

could be treated as the border of thermally untouched tissue. 

 

 
Fig. 8. Perfusion coefficient distribution w(Ψ) × 1000 [s–1], time 100, 300, 500 s 

(example 2) 

 
Fig. 9. Effective scattering coefficient µ′s(Ψ) [cm–1], time 100, 300, 500 s 

(example 2) 
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Fig. 10. Expansion of the thermal injury 

6. Conclusion 

The heat transfer process in the tissue subjected to laser irradiation is analyzed. 

The analysis is based on the bioheat transfer equation in the Pennes formulation 

while for calculation of light distribution in tissue, the Beer-Lambert law (colli-

mated part of fluence rate) and optical diffusion equation (diffuse part of fluence 

rate) are used. The perfusion coefficient and effective scattering coefficient are 

assumed to be dependent on the tissue damage which was estimated on the base of 

Arrhenius injury integral with the TTIW algorithm. Because the calculation in this 

way is closer to real conditions of the tissue destruction process during laser-tissue 

interaction, the estimation of the total size of tissue damage is more precise. 

Comparing the process of increasing of tissue damage, it is visible that for the 

example 2 the expansion of the lesion occurs slightly more evenly. The final areas 

of tissue damage are almost the same in both cases (c.f. Figure 10), however in the 

example 2 it was achieved at a lower local temperature value (c.f. Figures 4 and 5). 

It should be pointed out that for the description of light propagation in tissue, 

different models could also be taken into account e.g. the Monte Carlo approach 

[7]. It is also possible to use another equation of bioheat transfer such as Cattaneo- 

-Vernotte equation or dual phase lag equation [4, 5, 14, 15, 20-22, 24]. Further-

more, due to individual characteristics of biological objects, the various values of 

thermophysical and optical parameters should be considered. For this purpose, 

for example, the sensitivity analysis can be used. 
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