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Abstract. The Analytic Hierarchy Process (AHP) is perhaps the most popular approach to
decision-making problems of prioritization. The basis of the AHP is pairwise comparison,
which is used to compare alternatives. This comparisons are provided by decision makers
usually as linguistic expressions which are next converted to numbers from a fixed set
called a scale. The influence of the scale on the quality of prioritization was investigated in
a number of papers. One of the most important types of judgment scale is the Geometric
Scale. Its elements depend on specific parameters. In this paper, the impact of the choice of
this scale’s parameters on errors in priority vectors and on values of the inconsistency indices
is studied via Monte Carlo simulations.
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1. Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a widely used method of multi-criteria
decision analysis [1]. This method allows us to consider the multi-criteria decision
problem in single-criteria parts. The decision maker (DM) compares each alternative
with the others separately with respect to each criterion and each criterion with re-
spect to the overriding goal. In this way a pairwise comparison matrix (PCM) arises.
It is used to calculate the priority vector (PV), which collects relative weights of each
alternative regarding criteria or the overriding goal. Finally, all priority vectors are
joined to obtain priority weights of the alternatives reflecting the underlying prefer-
ences of DM [2].

In AHP practice, the DM judgments about priority ratio are expressed with the
help of some linguistic phrases which are next converted to the numbers of a fixed set
called a scale. Therefore the components of PCM are the numbers belong to a strictly
specified set.
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The most popular scale consists of the first 9 natural numbers and their reciprocals:

FS = {é, %, ey %, 1,2,...,9}. This original form is called the Fundamental Scale
and was introduced by T. Saaty [3,4]. An extended version of this scale consists of
more numbers (e.g 50 natural numbers and its reciprocal) and is called the Extended
Scale. There are also other propositions of priority scales in literature [1,5-10]. One
of them is the Geometric Scale (GS), whose elements form a geometric sequence.
The commonly used version of GS consists of nine natural powers of 2 and their
reciprocals, i.e.. GS = {278,277...,271,1,2,...,2%} or nine powers of /2 and re-
ciprocals, i.e.: GS = {274,273 ... 2705 1,205 . 2%} [1,6]. However there are no
restriction about power base or exponent range in GS. We test an impact of adopted
GS’s parameters on the correctness of the AHP procedure.

A scales usage inevitably leads to rounding errors. However, various scales may
entail a different error’s magnitude, so the important issue is the proper choice of the
scale. Some relationships between scales and errors was the scope of other papers
[8,10,11], so in this article, we deal solely with various forms of the GS. For this paper
we use computer simulation framework similar to the ones presented in literature
[12-16].

An inconsistency analysis is an important part of AHP. It is argued that some
PCMs cannot be used to estimate PVs because they contained judgment errors that
were too large [3, 17-19]. In order to eliminate such wrong matrices, the PCM-
quality characteristic was introduced. It is called an inconsistency index (ICI), but
many authors proposed their own definitions [2, 16,20-22]. In this paper, we also
study the impact of the GS’s parameters on the relationship between PV estimates
errors and the ICIs.

2. Preliminaries - notation

The main procedure in AHP is PV’s calculation. Assume that DM compares n
alternatives in respect to some criteria. Then we can mark a PV, which consists of
priority weights corresponding to any criterion as: W = [wy,wa,...,w,]. Therefore
the PCM takes on the form:

[ 1 wi/wa wi/ws ... owi/wy, ]
wa /wi 1 wa /w3 ... owa/wy
M= W3/W1 W3/W2 1 W3/Wn (1)
L wa/wi o wa/wa o we/ws L 1]

The judgments in the matrix M are called priority ratios. Because DM does not know
“true” PV, he/she usually is not able to estimate perfectly his/her priority ratios. Then
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we assume that the PCM’s elements satisfy formula (e.g. [3, 16,17, 19]):
Wi
ajj = ij < Ejj 2
in which g;;, called a perturbation factor, is the positive real random variable whose
expected value EX = 1.

T. Saaty proposed to evaluate PV from PCM as a right eigenvector which is con-
nected to the principal (i.e. maximal) eigenvalue of PCM [2]. This method is criti-
cized for some drawbacks and disadvantages [13,15,17,20]. One of them is that this
method can be used only for reciprocal matrices, i.e. for matrices whose elements
located below diagonal are reciprocities of these located above diagonal:

Vi< j aﬁzl/aij 3)

Although the equation (3) is satisfied by priority ratios of formula (1), it usually
does not happen for a DM matrices. In real life, reciprocity of PCM is enforced by
replacement the components below diagonal by reciprocals of this above diagonal.
Unfortunately, such a procedure results increase of errors in PCMs [15].

Popular procedure, which can be used to calculate PV’s estimation for both recip-
rocal and non-reciprocal PCM, is so-called the Geometric Mean Method (GM) [20].
According to it, priority weight’s estimation is expressed by the formula:

([T aij) /"
Y ([T @)t/

The GM is promoted by some authors [13,17,23,24]. It is also easy to implement so
we use it in our simulation.

Our paper is focused on GS parameters and theirs importance for AHP procedure.
This scale, introduced by F. Lootsma [6], consists of powers of any real number. It
is possible to use any real number as a power base, but number 2 or /2 are most
often implemented. In opposite to FS, equal ratios characterize numbers of this scale.
In our investigations we consider GS with variety power bases and a range of ele-
ments. We mark different cases of GS by the parameters in bracket (power base,
elements number). Expression of scale elements, the numerical values of common
ratios and the minimal and maximal elements of each scale are presented in Table 1
in Appendix.

i=1,....n0 4)

Vi =

3. Inconsistency indices

The important part of AHP is inconsistency analysis [16,25]. DM’s PCMs may
contain some small inaccuracies or big errors. Because the true PVs are not known, it
is not known if the errors in PCMs exist and how big they are. The manner to verify
a correctness of PCMs is checking PCMs consistency.
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Definition 1 (The Consistent Pairwise Comparison Matrix). The pairwise compar-
ison matrix M = [a;j],x, is called consistent if its elements satisfy condition:

Vi, j,k  ag-axj = ajj )

Indeed ”ideal” PCMs, i.e. matrices which satisfy formula (1) simultaneously sat-
isfy Definition 1. Regarding this fact, T. Saaty and the other authors introduce ICIs
which are a “measure” of PCM’s deviation from the “ideal” case. Although the
values of ICIs indicate how much PCM is inconsistent, in reality they are threated
as an indicator of the PCM-quality as a basis for PV’s estimates. It would be a cor-
rect approach if they were strongly correlated with errors in PCMs and, maybe more
importantly, with errors in estimated PVs [16,22]. This correlation depends on used
scales, so we test the influence of GS’s parameters on the quality of 4 presented below
ICIs.

Definition 2 (Saaty’s ICI). [2]. Let M is reciprocal PCM. Saaty’s ICI of matrix M
is given by the formula:

Afmax —n

SI(n) = (6)

n—1
where A, is the principal eigenvalue (i.e. maximal positive eigenvalue) of M.
Definition 3 (Geometric ICI (by Crawford & Williams)). [20]. Let M = [a;j]nxn

is a PCM and let v; (i = 1,...,n) are estimations of PV’s components obtained by
(4). Geometric ICI of M is given by the formula:

2 ajjvj
o0~ =g e () @

i<j i

Definition 4 (Koczkodaj’s ICI). [21]. Let M = [a;j],xn is a PCM and let for any
triad (a;j,ajk,ax;) of elements M a triad inconsistency is defined as:

TI(aij,Clihakj):min{‘l_ aij ‘,‘1_“""“"1‘} (8)

ajkay ajj
Then the maximum of triads inconsistency is called Koczkodaj’s ICI:
KI = max(TI(a;j, ajx, ax;)) (©)]
where the maximum is calculated for all different triads of matrix M. o

Definition 5 (Average Tridas ICI (by Grzybowski)). [16]. Let M = [a;j]ux, is
a PCM and let for any triad (a;j,a,ax ;) of elements M a triad inconsistency is
defined by formula (8). Then the average triads inconsistency we called Average
Triad ICI:

ATI = Mean(TL(a;j, ai, ax;)) (10)
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where the Mean is calculated for all different triads of matrix M. o

4. Simulation framework
In order to achieve the goal of the paper, we analyze errors in PCMs and PV’s

estimations and their correlation with ICIs. We take into account two kinds of errors:
absolute (AE) and relative (RE) [16,22]:

AE(V,W)Zi‘Wi—V," (11)

(12)

where w; (i =1,...,n) are elements of a DM "true” PV and v; (i = 1,...,n) are their
estimate. Analogously AE and RE for PCMs are defined.

Because we do not know in practice the DM’s true PCM, we generate the “true”
PV and connected with it the ”perfect” PCM, which is next disturbed and rounded to
scale. The estimation of PV is obtained on the basis of disturbed PCM. Our Monte
Carlo simulations are similar to those existing in literature [12,13,15,16,22,25] and
run in following steps:

1. Generate random “’true” n-dimensional PV and calculate “perfect” PCM (1).

2. Multiply a randomly chosen component above diagonal in "perfect” PCM by
”big” factor B € Dp.

3. Multiply all components of PCM by perturbation factor &;; of a given proba-
bility distribution 7, (2).

4. If the reciprocal matrix is under consideration, convert PCM components be-
low diagonal by reciprocals of components above diagonal (3).

5. Round PCM components to selected scale (Table 1).

6. Calculate values of selected inconsistency indices on the basis of disturbed
PCM (6, 7, 9, 10).

7. Calculate the estimation of PV on the base of disturbed PCM. (4).

8. Calculate the AE and RE of PV estimation and of disturbed PCM in compari-
son to "true” PV and "perfect” PCM (11, 12).

9. Record all obtained values separately in the database.
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The “big” factor is the number from the set Dp = {1,2,3} [16], wherein the num-
ber 1 means the lack of a ’big” error. Distribution of the perturbation factor 7 is one
of the four: gamma, log-normal, truncated normal and uniform [12, 16, 17, 19, 23],
each used in the same number of matrices. We take into account 3 different stan-
dard deviations o, € {0.1,0.2,0.3} [16, 19]. We consider both reciprocal and non-
reciprocal PCMs to test the impact of “enforced” reciprocity in AHP.

The results which was presented in Table 2 show the values of AE and RE in dis-
turbed PCMs and in comparison to them estimations of PVs. In the first four columns,
the average errors are calculated on the basis of the PCMs disturbed evenly by a per-
turbation factor with standard deviation 6z = 0.2. The 800 matrices were investigated
(200 matrices for each distribution), each disturbed 25-times, so the average values
were gained on the basis of 20000 PCMs and PV estimations. The next four columns
present results for standard deviation of perturbation factor o € {0.1,0.2,0.3}.
Additionally multiplying by the ”big” error B = 2 was applied. The numbers in the
Table are average values computed on the basis of 60000 PCMs or PV’s estimations
(20000 for each o). The investigation is made for both reciprocal and non-reciprocal
PCMs.

The next characteristic which we use to test GS is the correlation coefficient be-
tween ICIs and errors in estimations of PV. In order to compute it, the disturbed PCMs
are sorted regarding the values of ICIs and are split into some equal number classes.
Then the average values of ICIs, AEs and REs related to each class are calculated and
the Spearman Rank Correlation Coefficient (SRCC) on the basis of average values is
computed [16]. The Tables 3-6 contain results for two different standard deviations
of perturbation factor (o, = 0.2 or o, = 0.3) as well as the results for joined case
(0e € {0.1,0.2,0.3}). The first three columns contain results for PCMs solely dis-
turbed by the perturbation factor and the next three for PCMs with additional “big”
error B = 3. Similarly to Table 2, the results are obtained on the basis of 20000 ma-
trices (800 PCMs, each perturbed 25-times) and in joined case on the basis of 60000
matrices (2400 PCMs, each perturbed 25-times). The investigation was conducted
for reciprocal and non-reciprocal matrices separately.

5. Results

The results collected in all tables in the Appendix are sorted similarly to scales in
Table 1, i.e. by descending the range of scale elements and next by descending their
ratio. One can see that errors in PCM and in PV estimations and the values of SRCC
between errors and ICIs depend on GS’s parameters.

When we look at Table 2, we observe the smallest values of the errors for scale
GS(V/2,16) or GS(v/1.5,16) and the biggest errors for GS(2,8) or GS(V/2,8). One
can note the scales with the same range of elements but with bigger elements number
(smaller base) characterize the smaller errors in compare to this with a small number
of elements. The scale range seems to have a big impact on the results. The smallest
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errors are usually observed for quite a big range, i.e. for GS (\/ﬁ, 16), whose the
biggest element is 1.5% ~ 25.63.

The impact of GS’s parameters on ICIs show Tables 3-6. Similar to Table 2,
results are better for scales with a large number of elements (i.e. with small power
base) but now the strongest correlation is observed for a small range of scale, e.g.
for GS(V/2,16) or GS(1.2,16). The SRCCs for the scales with big range (e.g. for
GS(2,8) or GS(v/2,16)) are the smallest among investigated scales. Especially for
the reciprocal matrices and standard deviation o, = 0.2 it is usually negative.

When we compare the results in Tables 3-6, we can sometimes see a different
magnitude of SRCC for different ICIs. The biggest disparity is for the index SI,
for which the SRCC is high for reciprocal matrices but incomparably low for non-
reciprocal ones. This cannot be observed for the other indices, for which the non-
reciprocal PCMs with scale GS(2,8) and GS(v/2,16) achieve quite high correlation.
For reciprocal matrices, we can note the lowest but acceptable value of SRCC for
index KI. The highest SRCC is mostly demonstrated by index GI.

6. Conclusions

This paper shows the importance of GS’s parameters proper choice in the AHP
procedure. As one can see, the parameters have big impact on errors in PV’s esti-
mation as well as on the correlation between these errors and inconsistency indices.
It turns out the commonly used GS, i.e. version GS(2,8) or GS(V/2,8), generate
the highest errors in PCM and PV’s estimation (among parameters investigated in
our simulation). However doubling the number of elements in the scale results in
reducing errors. The relationship is similar for errors in PCM and PV’s estimation,
however differ a little for correlation with indices. Weak correlation characterizes
the scale GS(2,8) and GS(v/2,16) while the strong correlation characterizes the GS
with a small maximal number e.g. GS(1.2,16) or GS(v/2,16). In turn, the number of
elements increasing cause usually better correlation with inconsistency indices and
smaller values of errors in priorities estimation.

The important issue is the reciprocity of PCM. As one can see in Table 2, this
artificial feature causes the big errors in PCMs and PV’s estimations and worse cor-
relation coefficients. Taking this into account, the better inconsistency indices seem
to be GI or ATI among the investigated one.

In the light of our investigation, it seems reasonable to use in the AHP procedure
the GS with a moderate range and high number of elements. While deciding about
scale parameters it should be also take into account what is DM preference, whether
they are more interested in small errors in preference weighs or strong correlation
with inconsistency indices.
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Appendix
Table 1. Geometric Scale with different parameters

Scale Components Ratio | Min | Max
GS(2,8) {278277...2711,2,...,2%} 2.00 | 0.004 | 256.0

GS(V2,16) {2782775 27051205 2% 1.41 | 0.004 | 256.0
GS(1.5,8) {158 157, ..1511,15,...,1.5% 1.50 | 0.039 | 25.6
GS(V1.5,16) | {1.5781.5775...,1.57951,1.5%5 .. 1580 | 1.23 | 0.039 | 25.6
GS(1.2,16) {12710 1275 12711,1.2,...,1.210 120 | 0.054 | 185
GS(v/2,8) (27427352705 1,205 2%y 1.41 | 0.063 | 16.0
GS(v/2,16) (27427375 27025 1 2025 oty 1.19 | 0.063 | 16.0

Table 2. Average errors in PCM 5 x 5 rounded to variety GS and PV estimated by GM for reciprocal
and non-reciprocal matrices. Standard deviations of disturbance factor o = 0.2 or joined
oe € {0.1,0.2,0.3}

o, =0.2 o: € {0.1,0.2,0.3}
matrix in PCM in PV in PCM in PV
rec. | scale AE RE AE RE
yes | GS(2,1) 0.642 | 0.244 | 0.016 | 0.104 | 0.787 | 0.297 | 0.019 | 0.123

yes | GS(V2,16) 0.496 | 0.187 | 0.012 | 0.079 | 0.653 | 0.247 | 0.017 | 0.109

yes | GS(1.5,8) 0.539 | 0.196 | 0.013 | 0.086 | 0.675 | 0.254 | 0.017 | 0.113

yes | GS(V1.5,16) | 0.496 | 0.178 | 0.012 | 0.076 | 0.637 | 0.236 | 0.017 | 0.108
yes | GS(1.2,16) 0.567 | 0.183 | 0.012 | 0.084 | 0.683 | 0.241 | 0.017 | 0.115
yes | GS \6,8) 0.612 | 0.201 | 0.014 | 0.094 | 0.750 | 0.259 | 0.018 | 0.124
yes S(V2 16) 0.599 | 0.188 | 0.013 | 0.092 | 0.713 | 0.245 | 0.018 | 0.121

no

6) 0.481 | 0.179 | 0.011 | 0.069 | 0.592 | 0.222 | 0.013 | 0.087
)

no 0.516 | 0.186 | 0.011 | 0.074 | 0.632 | 0.230 | 0.014 | 0.092

a ;

(

(

(

(

(
GS(V2,

no | GS(2,8) 0.592 [ 0.225 [ 0.014 | 0.087 | 0.694 | 0.264 | 0.016 | 0.102

GS(
GS(

(

(

(

(

no | GS 16) | 0.505 | 0.172 | 0.010 | 0.070 | 0.576 | 0.212 | 0.013 | 0.086
no | GS(1.2,16) 0.574 | 0.179 | 0.011 | 0.079 | 0.645 | 0.218 | 0.014 | 0.094
no | GS(v2,8) 0.571 | 0.192 | 0.012 | 0.083 | 0.709 | 0.236 | 0.015 | 0.105
no | GS \46,8) 0.562 | 0.181 | 0.012 | 0.081 | 0.677 | 0.223 | 0.015 | 0.102
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Table 3. Spearman rank correlation coefficient between SI of disturbed rounded to scale PCM size

5 x 5 and RE in PV estimation related to this matrix

RE in PV
matrix DB =1 DB=3
[ rec. | scale | 6:=02] 0.=03 ] joined | 6, =0.2 | 0. =0.3 | joined |
yes | GS(2,8) -0.326 0.865 0.874 -0.224 0.328 0.621
yes GS(\/E, 16) -0.096 0.820 0.991 -0.069 0.265 0.708
yes | GS(1.5,8) 0.998 1 0.998 0.997 1 0.962
yes | GS(v/1.5,16) 1 0.998 1 1 1 0.995
yes | GS(1.2,16) 1 1 1 1 1 0.997
yes | GS(V2,8) 1 1 1 0.992 1 0.986
yes | GS(V/2,16) 1 1 1 1 1 0.998
no | GS(2,8) 0.024 -0.279 0.119 0.817 0.500 0.382
no GS(\/E, 16) -0.406 -0.408 0.047 0.844 0.265 0.147
no | GS(1.5,8) 0.628 0.570 0.215 0.994 0.982 0.643
no GS(\/E, 16) 0.595 0.643 0.176 0.998 0.992 0.368
no | GS(1.2,16) 0.770 0.574 0.320 0.998 0.997 0.519
no | GS(v2,8) 0772 | 0764 | 0.365 1 0.986 | 0.690
no GS(%, 16) 0.789 0.682 0.393 1 0.994 0.526

Table 4. Spearman rank correlation coefficient between GI of disturbed rounded to scale PCM size

5 x 5 and RE in PV estimation related to this matrix

RE in PV
matrix DB=1 DB =3

[ rec. | scale | 6:=02] 0, =03 | joined | 6. =0.2 | 6. =0.3 | joined |
yes | GS(2,8) 0209 | 0719 | 0.829 | -0.417 | 0374 | 0.578
yes | GS(V2,16) -0.080 | 0820 | 0974 | -0.057 | 0218 | 0.767
yes | GS(1.5,8) 1 1 1 0.997 1 0.977
yes | GS(V1.5,16) 1 1 1 1 1 0.994
yes | GS(1.2,16) 1 1 1 1 1 0.997
yes | GS(v/2,8) 1 1 1 0.997 1 0.980
yes | GS(V/2,16) 1 1 1 1 1 0.998
no | GS(2,38) 0.925 0988 | 0.962 | 0.982 0.980 | 0.991
no | GS(v2,16) 0.967 0.982 1 0.934 0.956 | 0.971
no | GS(1.5,8) 0.998 0.998 1 1 1 0.994
no | GS(v1.5,16) 1 1 1 1 1 1
no | GS(1.2,16) 1 1 1 1 1 1
no | GS(v2,8) 1 1 1 1 1 1
no | GS(v2,16) 1 1 1 1 1 1
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Table 5. Spearman rank correlation coefficient between KI of disturbed rounded to scale PCM size

5 x 5 and RE in PV estimation related to this matrix

RE in PV
matrix DB =1 DB=3
[ rec. | scale | 6:=02] 0.=03 ] joined | 6, =0.2 | 0. =0.3 | joined |
yes | GS(2,8) -0.132 0.537 0.592 -0.330 0.025 0.168
yes GS(\/E, 16) 0.311 0.586 0.869 -0.143 0.037 0.455
yes | GS(1.5,8) 0.922 0.959 0.932 0.960 0.974 0.885
yes | GS(V1.5,16) | 0967 | 0980 | 0974 | 0975 | 0991 | 0.926
yes | GS(1.2,16) 0.975 0.980 0.992 0.988 0.987 0.954
yes GS(\@, 8) 0.951 0.958 0.973 0.969 0.979 0.952
yes GS(%, 16) 0.977 0.996 0.993 0.980 0.992 0.959
no | GS(2,8) 0.622 0.652 0.681 0.869 0.899 0.600
no GS(\/E, 16) 0.582 0.685 0.891 0.921 0.884 0.630
no | GS(1.5,8) 0.922 0.936 0918 0.960 0.976 0.805
no | GS(V15,16) | 0908 | 0958 | 0952 | 0979 | 0988 | 0.906
no | GS(1.2,16) 0.955 0.964 0.991 0.987 0.987 0.910
no GS(\@, 8) 0.930 0.959 0.945 0.969 0.975 0.915
no GS(%, 16) 0.978 0.966 0.992 0.974 0.991 0.931

Table 6. Spearman rank correlation coefficient between ATI of disturbed rounded to scale PCM size

5 x 5 and RE in PV estimation related to this matrix

RE in PV
matrix DB=1 DB =3

[ rec. | scale | 6:=02] 0, =03 | joined | 6. =0.2 | 6. =0.3 | joined |
yes | GS(2,8) 0254 | 0851 | 0.825 | -0.556 | 0.451 | 0.760
yes | GS(v/2,16) 20.126 | 0755 | 0967 | -0220 | 0247 | 0.959
yes | GS(1.5,8) 0.973 0.995 | 0.997 | 0.991 0.998 | 0.994
yes | GS(V1.5,16) 1 1 0.998 1 1 1
yes | GS(1.2,16) 1 1 1 1 1 1
yes | GS(v/2,8) 0.992 0.998 | 0.997 1 1 0.998
yes | GS(V/2,16) 1 1 1 1 1 1
no | GS(2,38) 0.726 0.893 | 0.845 | 0.935 0.947 | 0.955
no | GS(v2,16) 0.823 0919 | 0964 | 0919 0.967 | 0.995
no | GS(1.5,8) 0.970 0.992 | 0.995 | 0.971 1 0.989
no | GS(V1.5,16) | 0.997 0.998 | 0.998 1 1 1
no | GS(1.2,16) 1 1 1 1 1 1
no | GS(v2,8) 0.982 0.998 | 0.997 | 0.998 0.992 | 0.995
no | GS(v2,16) 1 0.998 1 1 1 1






