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Abstract. The transfer matrix method based on the Euler-Bernoulli beam theory is employed 

in order to originally achieve some exact analytical formulas for elastically supported 

beams under a point force together with uniformly distributed force and uniformly distrib-

uted couple moments. Those closed-form formulas can be used in a variety of engineering 

applications especially at the pre-design stage to get an insight into the response of 

the structure. Contrary to the classical boundary conditions, it is also observed that the 

Euler-Bernoulli solutions of a beam with elastic supports are sensitive to the ratio of length 

to thickness (L/h).  
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1. Introduction  

As it is well known, the Euler-Bernoulli beam theory (also known as the engineer’s 
beam theory or classical beam theory), which was first introduced circa 1750, still 

provides a simple calculation tool to analyse numerous static and dynamic engineer- 

ing problems [1-5]. The underlying well-known assumptions in the Euler-Bernoulli 

theory are: i) The cross-section is infinitely rigid in its own plane, ii) The cross-section 

of a beam remains plane after deformation, iii) The plane section initially perpen-

dicular to the mid-surface will remain normal to the deformed axis of the beam. 

Based on the experimental measurements, these assumptions are held for long 

and slender beams.  

The transfer matrix method also provides the scientists with a simple tool to 

model and solve one-dimensional problems [6-9]. The simplicity and easy pro-

grammability of the transfer matrix method makes it an alternative method to the 

finite elements in structural and mechanical engineering. 
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The present study is a continuation of Ref. [9] in which some exact analytical 

bending formulas for classically supported Euler-Bernoulli beams under both 

concentrated and generalized power/sinusoidal distributed loads were offered. 

As stated in the Abstract, an Euler-Bernoulli beam supported by both linear and 

rotational springs is to be considered in the present bending analysis. 

2. Application of the Transfer Matrix Method 

Let x be the beam axis, and let’s use the prime symbol for the derivative of 

the related quantity with respect to x. The governing homogeneous differential 

equation set for the out-of-plane bending analysis of the beam having a uniform 

section in canonical form is given by [6] 
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where ���� is called the state vector which comprises the cross-sectional quantities 
at a positive section, � is the differential matrix, �(�) is the transverse displace-

ment along z-axis, 	(�) is the rotation about y-axis, 
(�) is the bending moment, 

and �(�) is the shear force, and �� is the bending rigidity. Let’s denote the unit 
matrix by � to determine the characteristic equation of the differential matrix 
as follows 

|D-�J|= �� = 0 (2) 

Since every square matrix satisfies its own characteristic equation according to 

the Cayley-Hamilton theorem, �� = 0 is held. This means that the higher powers 
of the differential matrix that are equal or greater than four are identically zero.  

Both the state vector and the transfer matrix satisfy the similar type of differen-

tial equation as in Eq. (1) [6]:  ����� = �	�(�) (3) 

If the elements of � are constants as in Eq. (1), one may get an exact transfer 
matrix. In this case, the solution of Eq. (3) with the initial conditions, ��� = 0� = �, 
gives ���� as follows: 
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Let’s assume that the beam is to be subjected to both a distributed force �(�) 

and a distributed couple moment m(�) along the beam axis together with a concen-

trated force �
 and a couple moment �� acting at section � = �. Under this assump-
tion, the overall transfer matrix relates the state vectors at both ends of the beam 

as follows: 

���� = ������0� + � ��� −  �!� �d �

�

+ ��� − ��"��� (5) 

where !� � stands for the nonhomogeneous solution due to the distributed forces, 
and "(�) is referred to as a discontinuity matrix due to the intermediate point loads 
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For short, let’s use the following for symbolizing the elements of the state 

vectors at two ends 

��0� = ���0�	�0�
�0���0�� = ��
	


�
 �,   ���� = �����	���
�������� = ���	�
��� � (7) 

Boundary conditions considered in the present study are shown in Figure 1 and 

Table 1. In Figure 1 and Table 1, %
 and %� stand for the linear spring constants at 
the initial and final ends, respectively. The rotational spring constants at the ends 

are represented by #
 and #�. 

 

 

Fig. 1. Elastically supported beams 

Table 1 
Boundary conditions considered 

 � = 0 � = � 

Clamped-Elastic (C-E) �� = 0, �� = 0 �� = −����, �� = −���� 

Elastic-Elastic (E-E) �� = ����, �� = ���� �� = −����, �� = −���� 
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In the transfer matrix method, after evaluation of the transfer matrix, it is essen-

tial to calculate whole elements the whole elements of the initial state vector as 

a second key stage of the procedure. To do this, the boundary conditions given 

at both ends (Table 1) should be implemented into Eq. (5) to form the equations for 

the unknown quantities at the initial end of the beam. The unknown elements of the 

initial state vector are then obtained from the solution of the equations generated 

in this way. After determination of the full elements of ��0�, all sectional quantities 

at any section may be computed in a straight way as follows 

For �0 ≤ � < ��,   ��(x) =	������0�+ � ��� − 	�
�	�d	�

�
 

 

For �� ≤ � ≤ ��,  ���(x) =	������0�+ � ��� − 	�
�	�d	�

�
+ ��� − ������ (8) 

In the following two sections, the analytical formulas are to be derived for 

beams under separate distributed and concentrated loads. Since small deformations 

are assumed, the superposition principle is held when necessary.  

3. Solutions for uniformly distributed forces 

If only uniformly distributed forces and couple moments are concerned, 
��� = −
� and ���� = −��, a general solution takes the following form �0 ≤ � ≤ �� 
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3.1. A C-E beam under uniformly distributed loads 

In a C-E beam, the unknown elements of the initial state vector are found as 

follows after implementation of the boundary conditions as (Table 1)  

�� =

� �72EI���2EI + ����− �
� � �����6EI + ����
+24EI�3EI + 2������

12�����4EI + ����+ 144EI�EI + ����  (10a)
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Cross-sectional quantities are then derived in closed forms as 
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Dimensionless transverse displacements under uniform loads are defined as �4 = ��� ��
���⁄ ��. As a numerical example, two different spring constants 

are studied. They are chosen as #� = 1. 10� 	Nm rad⁄ , 	%� = 1. 10� 	N m⁄  and #� = 1. 10� 	Nm rad⁄ , 	%� = 1. 10� 	N m⁄ . The properties of the beam with a square 

section are: � = 1	m = constant, 	�
 = 1	N m⁄ , � = 30	MPa, � = ℎ�/12.  
Dimensionless transverse displacements in a C-E beam based on the two beam 

theories are shown in Figure 2 and Table 2. For � ℎ⁄ = 10, the Timoshenko 
solution gives higher transverse dimensionless displacements for all soft and stiff 

elastic springs.  

 

        

Fig. 2. Dimensionless transverse displacements in a C-E beam based on the two 
beam theories 
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Table 2 

Transverse displacements in C-E and E-E beams under uniformly distributed forces  

x/L 

L/h = 10 L/h = 20 L/h = 50 L/h = 10 L/h = 20 

�� = 1. 10�; 	�� = 1. 10� 

C-E Timoshenko E-E Timoshenko 

0. 0. 0. 0. 0.000125 7.8125.10–6 

0.2 0.00128868 0.00111953 0.00107501 0.001403 0.00112669 

0.6 0.00279552 0.00248325 0.00241261 0.002842 0.00248612 

1. 0.000124607 7.81093.10–6 1.99999.10–7 0.000125 7.8125.10–6 

 C-E Euler-Bernoulli E-E Euler-Bernoulli 

0. 0. 0. 0. 0.000125 7.8125.10–6 

0.2 0.00108028 0.00106752 0.00106669 0.001195 0.00107469 

0.6 0.00248371 0.00240525 0.00240013 0.00253 0.00240812 

1. 0.000124595 7.81091.10–6 1.99999.10–7 0.000125 7.8125.10–6 

 
�� = 1. 10�; 	�� = 1. 10� 

C-E Timoshenko E-E Timoshenko 

0. 0. 0. 0. 0.0125 0.00078125 

0.2 0.00232318 0.00120285 0.00107717 0.0140921 0.00192069 

0.6 0.00901646 0.00299159 0.00242591 0.0156882 0.0032904 

1. 0.00961267 0.000765863 0.0000199896 0.0125 0.00078125 

 C-E Euler-Bernoulli E-E Euler-Bernoulli 

0. 0. 0. 0. 0.0125 0.00078125 

0.2 0.00207851 0.00115022 0.00106885 0.0138841 0.00186869 

0.6 0.00867176 0.00291381 0.00241343 0.0153762 0.0032124 

1. 0.00954707 0.000765746 0.0000199896 0.0125 0.00078125 

 
Contrary to the classical supports, Euler-Bernoulli solutions of beams with 

elastic supports display sensitivity to the ratio of � ℎ⁄ . Develops with using much 

softer springs (Consider revising here. Oddly-worded and not sure of intent). Soft 

springs make the transverse dimensionless displacements higher at the elastically 

supported ends. Those displacements decrease with increasing ratios of � ℎ⁄  for 

the same beam. As it is well known, when both spring constants get larger and 

larger, viz., when #� → ∞ and %� → ∞, the elastic supports turn to be rigid ones 

in the limit case. 

3.2. An E-E beam under uniformly distributed loads 

The beam is, now, assumed to be elastically supported at two ends by using 

both the linear and rotational springs (Fig. 1). The elements of ��0� are as follows  
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Sectional quantities along the beam are explicitly presented in Eq. (13):  
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A variation of the dimensionless transverse displacement in an E-E beam is 

demonstrated in Figure 3 for two different spring constants that have been studied 

in the previous example. Some values of the transverse displacements in an E-E 

beam based on the two beam theories are also given in Table 2. From Figure 3, 

a symmetric variation of the transverse displacement is observed due to the sym-

metric loads and geometry. It is observed from both Table 2 and Figure 3 that an 

increase in the spring constants results in a decrease in the transverse displacements. 

In other words, the softer the springs, the greater the dimensionless displacements 

at both ends. The differences in the dimensionless displacements between the two 

theories get smaller with softer springs. As � ℎ⁄  increases, the transverse dimension- 

less displacements reduce. As a conclusion, it is again revealed that Euler-Bernoulli 
beams supported by elastic springs at both of its ends are sensitive to the variation 

of � ℎ⁄  ratios for especially soft springs. 

 

  

Fig. 3. Deflections in an E-E beam based on the two beam theories 
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4. Solutions for a point force 

In this section, due to the space limitations, beams are assumed to be subjected 

to only a concentrated force �
 acting at  � = �, 	"(�) = B0			0			0			−�
C�. Under 
this assumption, the general solution is written before and after � = � as follows �(�)� = ������0� ,    0 ≤ � < � 
�(�)�� = / ������0�
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The unknown elements of ��0� of a C-E Euler-Bernoulli beam are to be 
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The unknown elements of the initial state vector of an E-E Euler-Bernoulli 

beam are achieved as follows (
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With the help of Eqs. (14)-(16), cross-sectional quantities at any section may be 

obtained. 

5. Verifications of the results 

Ghannadias and Golmogany [5] presented a sextic B-spline method for the 

numerical bending solution of a Euler-Bernoulli beam (We use article “a” here 

because Euler is pronounced “yuler” I do believe) with arbitrary boundary condi-

tions on an elastic Winkler foundation. For an E-E beam under a uniformly distrib-

uted force, the following properties are used in this work (1	kg� = 9.81 N) [5]: � = 2038901.91	kg cm�⁄ , � = 	6572.4175	cm�, �� = 1.340051459406742 ×

10��, �
 = 15 kg cm⁄ , � = 500	cm	, #
 = #� = 0,				%
 = %� = 2500 kg cm⁄ . 

Results are presented in Tables 3 and 4. From those tables, a perfect harmonization 

is observed between the results.  

Table 3 

Validation of the present results of an E-E beam under uniformly distributed forces  

 [5]/Analitik [5]/B.Spline Present [5]/Analitik [5]/B.Spline Present 

x [cm] Displacement [cm] Slope [rad] 

0. 1.5 1.5 1.5 –0.00583 –0.00583 –0.00583 

50. 1.78596 1.78596 1.78596 –0.00550352 –0.00550352 –0.00550352 

100. 2.04102 2.04102 2.04102 –0.00461736 –0.00461736 –0.00461736 

150. 2.2407 2.2407 2.2407 –0.00331144 –0.00331144 –0.00331144 

200. 2.3675 2.3675 2.3675 –0.00172568 –0.00172568 –0.00172568 

250. 2.41093 2.41094 2.41094 0. 0. 0. 

300. 2.3675 2.3675 2.3675 0.00172568 0.00172568 0.00172568 

500. 1.5 1.5 1.5 0.00583 0.00583 0.00583 

x [cm] Bending moment [kgcm] Shear force [kg] 

0. 0. 0. 0. 3750. 3750. 3750. 

50. 168750. 168750. 168750. 3000. 3000. 3000. 

100. 300000. 300000. 300000. 2250. 2250. 2250. 

150. 393750. 393750. 393750. 1500. 1500. 1500. 

200. 450000. 450000. 450000. 750. 750. 750. 

250. 468750. 468750. 468750. 0. 0. 0. 

300. 450000. 450000. 450000. –750. –750. –750. 

500. 0. 0. 0. –3750. –3750. –3750. 
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Table 4 

Variation of the maximum displacement (cm) in an E-E beam with the length of the beam 

 
� [cm] 

100 250 500 1000 

Present 0.301457 0.806934 2.41094 17.575 

B. spline [5] – – 2.41094 – 

 
Let us show that the elastic supports return to the rigid ones when very stiff 

springs are used. The maximum dimensionless displacement in a C-E beam occurs 

at the mid-span when very stiff springs are used (Table 5). Based on the Euler- 

-Bernoulli beam theory, the maximum dimensionless displacement is evaluated as �4���
� = 0.00260417 being insensitive to the variation of the ratio of �/ℎ as seen 

from Table 5. This value is also equal to the maximum dimensionless displacement 

in a C-C beam. The reason is that very stiff springs may behave as rigid supports. 

�����
� ���� = ��/�

� =
�
��

384EI
= 0.00260417

�
��
EI

= �4�/�
�

�
��
EI

 (17)

Table 5 

The maximum displacement in a C-E beam with very stiff springs under uniform forces 

 �/ℎ = 10 �/ℎ = 20 �/ℎ = 50 �/ℎ = 100 

 �

�/�
�   (�� = 1·1024; �� = 1·1024) 

Timoshenko 0.00292917 0.00268542 0.00261717 0.00260742 

Euler-Bernoulli 0.00260417 0.00260417 0.00260417 0.00260417 

 
Some other numerical displacements of this example in both dimensional and 

dimensionless form are also presented in Table 6 to provide insight into the prob-

lem. From this table, it is understood that the dimensionless displacements in a C-E 

Euler-Bernoulli beam with highly stiff springs, viz., in a C-C Euler-Bernoulli beam 

are insensitive to the ratio of length to the thickness. This does not mean that  

Euler-Bernoulli beam dimensional results do not change with the length of the 

beam.  

Table 7 shows the dimensional transverse displacements in a C-E beam with 

soft springs. This table states that an Euler Bernoulli-beam with elastic supports 

may be sensitive to the �/ℎ ratios contrary to the classical supports. As expected, 

dimensional displacements increase with increasing �/ℎ ratios. From Table 2,  

however, their dimensionless counterparts decrease with increasing �/ℎ ratios. 
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Table 6 

Both the dimensional and dimensionless displacements in a C-E beam with very stiff springs 

 �/ℎ = 10 �/ℎ = 20 �/ℎ = 50 �/ℎ = 100 

x/L DIMENSIONLESS DISPLACEMENT, �� = 1·1024; �� = 1·1024, Timoshenko 

0.2 0.00127467 0.00111867 0.00107499 0.00106875 

0.6 0.002712 0.002478 0.00241248 0.00240312 

1. 1.25·10–22 7.8125·10–24 2·10–25 1.25·10–26 

 DIMENSIONLESS DISPLACEMENT, �� = 1·1024; �� = 1·1024, Euler 

0.2 0.00106667 0.00106667 0.00106667 0.00106667 

0.6 0.0024 0.0024 0.0024 0.0024 

1. 1.25·10–22 7.8125·10–24 2·10–25 1.25·10–26 

 DIMENSIONAL DISPLACEMENT (m), �� = 1·1024; �� = 1·1024, Timoshenko 

0.2 5.09867·10-6 0.0000715947 0.00268747 0.0427499 

0.6 0.000010848 0.000158592 0.0060312 0.0961248 

1. 5·10–25 5·10–25 5·10–25 5·10–25 

 DIMENSIONAL DISPLACEMENT (m), �� = 1·1024; �� = 1·1024, Euler 

0.2 4.26667·10-6 0.0000682667 0.00266667 0.0426667 

0.6 9.6·10-6 0.0001536 0.006 0.096 

1. 5·10–25 5·10–25 5·10–25 5·10–25 

Table 7 

The dimensional displacements in a C-E beam with soft springs 

 �/ℎ = 10 �/ℎ = 20 �/ℎ = 50 �/ℎ = 100 

x/L DIMENSIONAL DISPLACEMENT (m), �� = 1·1024; �� = 1·1024, Timoshenko 

0.2 9.29273·10–6 0.0000769821 0.00269294 0.0427553 

0.6 0.0000360659 0.000191462 0.00606478 0.0961584 

1. 0.0000384507 0.0000490153 0.000049974 0.0000499984 

 DIMENSIONAL DISPLACEMENT (m), �� = 1·1024; �� = 1·1024, Euler 

0.2 8.31403·10–6 0.0000736139 0.00267213 0.0426721 

0.6 0.000034687 0.000186484 0.00603358 0.0960336 

1. 0.0000381883 0.0000490077 0.000049974 0.0000499984 

6. Conclusions 

In the present study, some remarkable formulas were originally proposed for 

the bending behaviour of elastically supported Euler-Bernoulli beams under both 

uniformly distributed and concentrated loads via the transfer matrix approach. 

Dimensional and dimensionless results given in both tabular and graphical forms 
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were discussed. It is mainly observed that Euler-Bernoulli beam solutions become 

sensitive to L/h ratios when they are elastically if it is elastically supported.  

The author hopes that these formulas will be quite useful when trying to validate 

purely computational solutions. 
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