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Abstract. In this paper we extend the method of obtaining symmetries of ordinary differ-
ential equations to first order non-homogeneous neutral differential equations with variable
coefficients. The existing method for delay differential equations uses a Lie-Bécklund
operator and an Invariant Manifold Theorem to define the operators which are used to obtain
the infinitesimal generators of the Lie group. In this paper, we adopt a different approach and
use Taylor’s theorem to obtain a Lie type invariance condition and the determining equations
for a neutral differential equation. We then split this equation in a manner similar to that
of ordinary differential equations to obtain an over-determined system of partial differential
equations. These equations are then solved to obtain corresponding infinitesimals, and hence
desired equivalent symmetries. We then obtain the symmetry algebra admitted by this neutral
differential equation.

MSC 2010: 22E65, 22E70, 76M60, 58770
Keywords: determining equations, infinitesimals, invariance, neutral differential equations,
splitting equations, symmetries

1. Introduction

In many branches of science and engineering, differential equations are of pro-
found importance as we encounter them in modelling most physical phenomenon.
However, differential equations involve the values of the unknown function and its
derivatives, all at the same instant . This may not always be the case, as most sys-
tems respond after a time delay. When the derivative of a function, at a given time
instant, depends not only on the unknown function values at the same instant, but
also at previous instants. Such equations are then called Delay Differential Equa-
tions. Delay differential equations find applications in biological systems, population
dynamics, networking problems, rolling of ships, electrical engineering, etc [1]. Well
known methods to solve delay differential equations are method of steps, numerical
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solutions, substitutions, and power series solutions [2]. A lot of literature on delay
differential equations is available in [3,4].

A more general class of differential equations are ones with deviating arguments,
i.e equations containing some functions along with some of their derivatives at
different argument values. This class of differential equations are called Functional
Differential Equations. The various types of functional differential equations are
differential difference equations, integro-differential equations, delay differential equa-
tions, neutral differential equations, etc. Several applications of functional differen-
tial equations include heat transfer problems, signal processing, evolution of species,
traffic flow, study of epidemics, population models, prey-predator models, etc.

In this paper we restrict our attention to neutral differential equations. Neutral
differential equations are differential equations in which the unknown function and
its derivative appear with time delays. Such equations are of importance in models
involving flip-flop circuits [5], compartmental systems [6], etc. and are extensively
studied. In [7], neutral differential equations are solved using the multistep block
method. Other methods of solution include the implicit block method [8], and analyse
discontinuities of the derivatives as studied in [9]. Our focus is to obtain symmetries
and the corresponding generators of neutral differential equations.

Symmetries are transformations that leave an object unchanged or invariant.
As explained in [10], symmetries are very useful in the formation and study of laws
of nature. They find a wide range of applications in Physics and Mathematics in the
existence of conservation laws. The need for similarity arises from the regularities of
the laws that are independent of some inessential circumstances. The reproducibil-
ity of experiments in different places and different times rely on invariance laws.
The concept of symmetry has interested many scientists, like Kepler, in determining
the orbits of planets, to Newton in studying the laws of mechanics - as a symmetry
principle. In the nineteenth century, Sophus Lie began investigations of continuous
groups of transformations leaving the differential equation invariant, in a study now
called symmetry analysis of differential equations. The main idea in Lie’s theory of
symmetry analysis of differential equations relies on the invariance of the latter under
a transformation of dependent and independent variables.

In this paper, we study the first order neutral differential equation

x/(t):f(tﬂx(t)vx(tl)vxl(tl))7 (1)

where f is defined on a suitable domain discussed in detail in the subsequent sec-
d
tions. The notations x(¢;) mean x(g(t)),g(¢) <t and x'(¢; ) mean d—j (g(1)). We further
af af
0 and

) 7 0 e
specify the delay point 7; by #; = g(¢), where g(¢) < ¢, which is the most general kind
of delay. We assume that the delay function g(¢) is sufficiently smooth in some inter-

val. We will first need to find a group under which this neutral differential equation
is invariant. We call this the admitted Lie group by which we mean that one solution

assume that

= 0. To determine the problem completely, we
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curve is carried to another solution curve of the same equation. We then use this
group to obtain the desired equivalent symmetries.

Several research papers [11, 12], are dedicated to obtaining symmetries of delay
differential equations. These research papers define a certain operator, equivalent
to the canonical Lie-Bicklund operator, which they use for obtaining symmetries.
A research paper by Pue-on [13] is devoted to obtain equivalent symmetries of
a second order delay differential equation by defining an operator equivalent to the
canonical Lie-Bécklund operator and suitable other operators. Linchuk [14] has sug-
gested a group method to study functional differential equations based on a search of
symmetries of underdetermined differential equations by methods of classical and
modern group analysis, using the principle of factorization. The method therein
encompasses the use of a basis of invariants consisting of universal and differen-
tial invariants. A classification of some non-linear neutral differential equations with
constant coefficients to solvable Lie algebras are made in [15]. Recently in [16] Lie
symmetry method is employed to solve and obtain the infinite dimensional symme-
try algebras of fractional neutral ordinary differential equations. In this paper, we
extend the results of obtaining symmetries of ordinary differential equations [17, 18]
to obtain symmetries of first order non-homogeneous neutral differential equations
with variable coefficients and general delay. We use Taylor’s theorem to do this. We
then obtain a Lie type invariance condition for neutral differential equations. Using
this, we suitably define an operator, its prolongation and extension and use it to obtain
our determining equations. These equations are then split with respect to the indepen-
dent variables to obtain an over-determined system of partial differential equations,
which are then solved to obtain the most general generator of the Lie group and the
corresponding symmetries. We can then show that this neutral differential equation
admits an infinite dimensional Lie algebra.

2. Preliminaries

We first present some definitions and construction of infinitesimals for ordinary
differential equations.

Definition 1 (Lie Group)

Consider transformations ; = f;(t;,8),i,j = 1,2,---,n, which continuously depend
on the parameter 8. Further, we assume that for each i, f; is a smooth function of the
variables ¢; and has convergent Taylor series in 0.

This set of transformations are said to form a group if:

(i) Two transformations carried out in succession are equivalent to another transfor-
mation of the set.

(i1) There is a transformation for which the source and image points coincide.

(ii1) Each transformation has an inverse. o
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In general, the order in which the transformations are carried out matters. If the
order does not matter, then we label the group as abelian.
For example, = aat,t € R\{0} is a one parameter group called the stretching group.
As another example, consider 7 = 7 + &, which is also a group called the translational

group.
d _
For a first order ordinary differential equation d—); = F(t,x), if 7= fi(t,x;0),

= fo(t.0:8), then o(r,x) = 2LEBY o Y = ‘mgg“()).

o and Y are called coefficients of the infinitesimal transformations or simply

infinitesimals. The infinitesimal generator is given by, {* = o(z,x)=— + Y(z,x)

o ox’
Let the differential equation be invariant under the Lie group
f=1+80(t,x)+0(8%), x=x+08Y(t,x)+0(8%).
. . . dx o
If we express our differential equation as = F(,X).
Then,
- dx
ax _ ar
- =
dt o
_ s+ 8Y(x) +0(87)
L(t+8w(t,x)+0(82) @)
_ L (Y, +YX)5+0(5%)
1+ (o + ox') 6 + 0(6?)
d
= [+ (N +T.0)5+0(87)] [1 - (@ + o)+ 0(5%)]
d
_ di; Y+ (e — @)X — 028+ 0(8%).

Using the fact that the differential equation is invariant under the above Lie group,
we get

Y+ (Y — o)F — oF* = oF, + YF,, 3)

which is known as Lie’s Invariance condition.

The above preliminaries for ordinary differential equations stands a motivation
for our work on neutral differential equations as corresponding literature for delay
differential equations is still in developing stages on different lines.

We have the following definitions:

Definition 2 (Neutral Differential Equation)
Let J be an interval in R, and let D be an open set in R. Sometimes J will be
[to, B), and sometimes it will be (a,3), where o <19 < B. Let f map J x D° — R.
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Conveniently, a first order neutral differential equation is expressed as

X (t) = fe,x(r),x(g(r)), X' (g(1))), @

where x and f are real valued functions, and g(¢) is a retarded argument i.e. g(z) <t.
We consider equation (4) for o < ¢ < f together with the initial function

x(t)=0(t), y<t<n, 5)

where 0 is a given initial function mapping [y,7] — D. o

Definition 3 (Solution of a Neutral Differential Equation)

By a solution of the neutral differential equation (4) satisfying (5), we mean a differ-
entiable function x : [y, B1) — D, for some B; € (to, B], such that

1. x(t) = 0(¢), for y <t < ty, and

2. x(t) reduces equation (4) to an identity onzy < < f3;.

We understand x'(ty) to mean the right-hand derivative. 0

3. Extension of results and Lie type invariance condition
for Neutral Differential Equations

In this section we extend the results of ordinary differential equations to neutral
differential equations given by equation (1). In order to determine the neutral dif-
ferential equation completely, we need to specify the delay term, where the delayed
function is specified, otherwise the problem is not fully determined.

Let a function F be defined on a 5-dimensional space. We extend our results to

& — P (1x,(0),x(6(0)) X (500)). ©

Let the neutral differential equation be invariant under the Lie group
f=t4+8w(t,x)+0(8%), F=x+8Y(t,x)+0(5%).

We then naturally define g(r) = g(t) +80(g(1),x(g(1))) +0(8%) and x(g(r)) =
=x(g(t)) +8Y(g(1),x(g(t))) + O(8).

With the notations, ®; = @(g(t),x(g(z))), and Y; =Y (g(r),x(g(r)))), it follows
that,
Y (1) = S (50)
= x(11) + (T1)sy + (C1)agey) — (@1))2 (11) = (2 (11))* (01) ()8 + 0(52%)

For invariance, % — F(i,%,20), 58 0)) ¥ (20)))-
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This gives,

? + X 4 (Y — @)X — 0x?]6 4 0(8?)

= F(t+6w+0(52) x+8Y+0(8%),g(t) + 8w +0(8%), x(t1) + 81 +0(8%),

X (1) + (1), + ((Tl) () — (@1))X' (1) = (¢ (11))*(@1)a1,)) 8+ O(87))
= F(t,x,8(1),x(g(1), %' ((t)) + (0F, + YF + o1 F, +Y1Fy))
+X 1 F )8+ 0(8%),

where Y15y = (Y1), + ((Y1)x() = (@1)n)¥ (1) = (4 (1)) (@1) 1) -
Comparing the coefficient of §, we get

®)

OF, + YF+ 01 F, + 1 Fy) + Vi Fo) = Y+ (T — o)y —ox?. (9)

The above obtained equation (9) is a Lie type invariance condition.
Similar to the case of ordinary differential equations, we can define a prolonged
operator for neutral differential equation as

5 9 o P
e - M ot

0 0
With the notation D, = — +x' =, we can write,
ot ox
dx dx
i 4t (10)

where Yy, = D;(Y) —x'D;(®). We then define the extended operator

d 0 d d 0
(1) _ 9 _9
S o o ey T g T gy D
Defining A = x'(r) — F(t,x(1),8(r),x(g(t)), % (g(r))) = 0, we get
WA =Yy — 0F +YF+ 01 F, + Y1Fy,) + Yij0Fo,)- (12)

Comparing equations (9) and (12), we get

Y=Y+ (Y- w,)x — ox".

On substituting x' = F into (DA =0, we get an invariance condition for the neutral
differential equation which is {(VA [,—g = 0, from which we will obtain the deter-
mining equations.

We point out here that equations (10)-(12) is an easy way of working we higher order
differential equations as compared to equations (7)-(9) which is simpler to use for
lower order differential equations.
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4. Symmetries of Non-homogeneous Neutral Differential Equation
of First Order

Consider the neutral differential equation

X (1) = au(t)x(t) + B(1)x(g(t)) + v(t) + p (1) (8(1))- (13)

We obtain symmetries of the non-homogeneous neutral differential equation (13),
where g is a sufficiently smooth function with g(¢) <. Also o(z), B(z), y(¢) and
p(1) are sufficiently smooth functions satisfying B2(¢) + p2(¢) not identically zero
and g(¢) is non constant.

We seek our coefficient of the infinitesimal transformation @ of the form, (that is we
assume) ®(t,x) = @(z). Then applying the operator defined by (11), to the delay
equation #; = g(t), we get,

o) =g (t)o(t). (14)
Applying operator § () defined by (11) to equation (13), we get

Yo (t,x) + (Ye(t, %) — (1)) (ex(t)x(r) + () (8(1)) +7(t) +p(1)x'(g(1)) =
(1) (@' (1)x(1) + B'(1)x(g (1)) +7' (1) +p'(1)x'(8(0))) + (1) Y (1,) + B ()Y,
+p (1) + ((C1)x(y) — @1)) (x(t)x () ﬁ(t)X( (1) +7() +p(0)x'(3(1)))-

Differentiating with respect to x(#;) twice, we get

B st PO oot -+ (e (0)x(0) + B(0)x(s(6)) + (1)

+p ()% (g(1)) (Y1) x(ey a1 )x(ar)) = O-

Splitting the equation with respect to x'(g(z)), we get pz(t)(Tl)x(tl)x(tl)x(ll) =0,
which is solved to give

1
Y(t,x) = EA(z)xz +B(t)x+C(t). (16)
Substituting equation (16) into the determining equation (15), we get

LR £ B0 +C (1) + (A(0)x+B(t) — o (1)) (a(t)x
+B(1)x(g(2)) +y(t) +p(r)x' (gt ))) |

= ()0 (1)x+B'(1)x(g(1) + 7 (1) +p'(1)x (g(2))) + a(z )(EA(f)xz
+B(f)x+c(f))+ﬁ()(% (11)x* (1) +B(t)x(t) +C(11))
+P(l)[( "(t1)x* (1) + B (t1)x(11) +C'(11)) + (A(t)x(t1) + B(ty)
—w{(rl))( o(r)x+ B (r)x(g(r) +v(r)+p()x'(g()))].

Splitting equation (17) with respect to x%, we get

Al) = exp(—/toc(s)ds)—i-Ao, (18)
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where Ay = constant.
Similarly splitting equation (17) with respect to x, x(g(1)), x*(g(1)), ¥’ (g(r)),
x(t)x(g(t)), x(t)x'(g(t)), x(g(t))x'(g(¢)) and with respect to constant term, we get

B'(t) +A(1)y(t) —p()a(t)B(tr) = o' (t)ax(t) + o ()@ (1) — p(£) (@) (1) (1), (19)

P()B (1) + (B(n) (14p (1)) ~ B)B() + p()A)Y(0) 0)
—p(1)(@1) (1) (1) + @' (1) B(1) + (1) B'(t) =0

A()B () +p(0)A" (1) +2p(1)A(1)B (1) =0, 20

B(1)p(1) = &' (1)p(1) + 0 (t)p'(t) + p*(1) (B(t1) — (1) (1)), (22)

A()B(t) = p(t)A(t)ex(t), (23)

A(t)p(r) =0, (24)

p*(1)A(1) =0 (25)

and

C'(0)+BY(0) - o/ (0)7(0) = 07 () + &)C) + BOCEH) e
+p()C' (1) +p(O)B(1 ) ¥(t) — p (1) (@) (1)Y(0)

respectively.
For a general « (1), B(z), y(¢), p(t) and g(¢), equations (14), (19), (20), (22) and (26)
have only one solution namely, @(z,x) = 0.
Equations (24) and (25), give A(t) = 0.
With (z,x) = 0 and A(z) = 0, equation (19) gives

B'(t)=a(t)p(t)B(t). (27)
Equation (20) gives

p()B'(n)+ (B(r)(1+p(r) — B(1))B(r) = 0. (28)
Equation (22) gives
B(t) =p(t)B(1). (29)

Substituting equation (29) in equation (27), we get

t

B(r) = Byexp( / a(s)ds), (30)
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where By = constant. Substituting equation (29) in equation (28), we get
B(1)B'(11) + B*(t1) (1) = 0. 31)

Having obtained B(¢) from equation (30), equation (31) is the compatibility condition
for B(t), from which the value of By can be found.
From equation (26), we get

C'(t) = a(t)C(t) + B(1)C(8(1)) +p(1)C (3(1)). (32)

That is, C(¢) satisfies the corresponding homogeneous neutral differential equation.
Thus, we obtain the coefficients of the symmetries as

o(t,x) =0, Y(t,x) = B(t)x+C(1).
Hence the most general solution of the determining equations corresponds to the in-
d
finitesimal generator {* = B(t)xa +C(t) ER

(31) and C(¢) solves the corresponding homogeneous neutral differential equation.

where B(t) is given by equations (30),

Remarks:
(1.) In obtainining equivalent symmetries of the neutral differential equation given
by equation (13), we had assumed that, B2(r) + p?(r) is not identically zero.
However, we remark here that, if p(r) = 0,3(z) # 0, then equation (13) reduces
to a first order ordinary delay differential equation. From equation (26), we get
C'(t) = au(t)x(t) + B(t)x(g(t)) — B(t)y(t). From equation (27), we get, B(t) = By,
a constant. Hence, the infinitesimal generator of the admitted Lie group in this case

d

is given by, {* = (Box+E(1)) R where E(?) is the solution of the delay differential

equation x'(t) = ot(¢)x(t) + B (¢)x(g(¢)) — Boy(t).

(2.) If in equation (13), p(¢) # 0,B(¢) = 0, then from equation (26), we get

C'(t) = a(t)x(t) = B(t)y(t)(1 —p(t)) +p(t)C'(g(t)). From equation (31), B(t) = By,
d

a constant. Hence the generator in this case is given by, {* = (Bjx+ G(t))a—, where
X

G(t) is the solution of equation x'(t) = a(¢)x(¢) — Boy(t)(1 —p(2)) + p(£)x'(g(2)).

(3.) Further, if p(t) =0, B(r) = 0, then equation (13), reduces to a first order ordinary
differential equation. Again, From equation (27), we get, B(f) = By, a constant.

Hence, the infinitesimal generator of the admitted Lie group in this case is given by,
t

= (32X+Coexp(/0t(s)ds));x.
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5. Example

We give an example to illustrate the construction of a Lie group under which
a neutral differential equation is invariant.
Consider the neutral differential equation

X(t)+x(g(t))=0. (33)

Compared with (13), we get o(t) = B(t) =y(t) =0, and p(z) = 1.
For a smooth g(r) satisfying g(r) <t, x(t) = K, a constant, is a solution of the
equation (33). Following the procedure in section 4, we see that, for a nonzero By,

o(t,x) =0 and Y(¢,x) = Box+K.

dt - d _
This yields 75 o(f,x) =0 and — =Y(7,X) = Bopx +K.

On solving these equations with conditions X = x and 7 = ¢, when 6 = 0, we get

- 1
f=t and ¥ = B—[(Box+K)eB°3 —K]
0

which is the Lie group under which neutral differential equation (33) is invariant.

6. Conclusions

We have obtained the symmetries of the first order non-homogeneous neutral dif-
ferential equation with a general delay. We can make a group classification of the
first order neutral differential equation into the following cases. In all cases we see
that the first order neutral differential equation admits linear symmetries. The four
cases are presented below:

() If p(t) # 0,B(¢) # 0, and if x;(¢) is a general solution of the associated homo-
geneous neutral differential equation, then the non-homogeneous neutral differential

equation admits a symmetry algebra of infinite dimension, due to the linear superpo-
t

d d
sition principle, given by vector fields x| (t)a— and (x(r) —exp( / a(s)ds)x)a—.
x X
(i) If p(r) = 0,B(r) # 0, and if xp(¢) is a general solution of the associated
homogeneous delay differential equation, then the non-homogeneous delay differ-
ential equation admits a symmetry algebra of infinite dimension, due to the linear
d d
superposition principle, given by vector fields xz(t)a— and (x —xg(t))a—, where
X X

x3(t) is the solution of the non-homogeneous delay differential equation
¥ (t) = o(t)x(t) + B(t)x(g(t)) + y(¢). Further, if the delay differential equation is
homogeneous, then it admits a symmetry algebra again, of infinite dimension, given

d
by vector fields x,(7) % and X
x X
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(iii) If p(r) # 0,B(t) = 0, and if x4(r) is a general solution of the associated
homogeneous neutral differential equation, then the differential equation admits
a symmetry algebra of infinite dimension, due to the linear superposition principle,
given by vector fields, xA,(t)z and (x — xs (t))jx, where xs(¢) is the solution of the
non-homogeneous neutral differential equation

X (1) = a(t)x(t) +y(6)(1—p(1)) — p(1)x' ((1)).

(iv) If p(z) = 0,B(r) = 0, then the ordinary differential equation admits a symme-

try algebra of infinite dimension, due to the linear superposition principle, given by
t

d d
vector fields, X and exp(/a(s)ds))a.
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