
Journal of Applied Mathematics and Computational Mechanics 2019, 18(1), 53-67 

www.amcm.pcz.pl p-ISSN 2299-9965 

 DOI: 10.17512/jamcm.2019.1.05 e-ISSN 2353-0588 

NUMERICAL INVESTIGATION ON THE EFFECTS OF 

OBSTRUCTION AND SIDE RATIO ON NON-NEWTONIAN 

FLUID FLOW BEHAVIOR AROUND A RECTANGULAR BARRIER 

Sara Noferesti 

1 
, Hassan Ghassemi 

2
, Hashem Nowruzi 

3
 

1,3 Mechanical Engineering Department, Chabahar Maritime and Marine University, Chabahar, Iran 
2 Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran 

snoferesti1590@gmail.com, gasemi@aut.ac.ir, h.nowruzi@aut.ac.ir 
 

Received: 20 January 2019; Accepted: 15 May 2019 

Abstract. In this paper, the characteristics of the flow and forced heat transfer of power  

law non-Newtonian fluids that flow around a quadrilateral and rectangular cylinder that  

are located in a 2D channel are investigated by use of the finite volume method (FVM) in  

a steady state flow regime. To this accomplishment, in the constant temperature, the effects 

of a different obstruction ratio, aspect ratio and Reynolds number are investigated.  

The Reynolds number in the range 5 ≤ Re ≤ 40, the power index in the range 0.5 ≤ n ≤ 1.4, 

the aspect ratio in the range 0.5 ≤ a ≤ 2, and the obstruction ratio in the range 

0.125 ≤ b ≤ 0.5 were selected. By surveying the drag coefficient profiles, it’s concluded that 

as the obstruction ratio increases, the drag coefficient is increased, while an increase in the 

Reynolds number causes the lower drag coefficient. In addition, the drag coefficient is 

strongly increased by aspect ratio enhancements. 
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NOMENCLATURE 

Latin Letters  

Cd Drag coefficient I2 second inertia of the strain tensor 

Umax maximum speed T absolute temperature 

Tin uniform entered temperature k conduction coefficient 

V vector velocity cp specific heat at constant pressure 

u  Cartesian velocity in x-direction Greek Letters 

v Cartesian velocity in y-direction µ viscosity 

w Cartesian velocity in z-direction ρ density 

F vector of body forces σ stress tensor 

p total isentropic pressure τij shear rate tensor 

H Breadth of channel εij strain rate tensor 

m fluid concentration coefficient α aspect ratio 

n power law factor β obstruction ratio 
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1. Introduction 

Until now, researchers have been very interested in studying the fluid flows 

around a cylinder with different cross sections such as circles, squares, elliptics, etc. 

The importance of this phenomena in the industry is due to the need for continuous 

information on the parameters of fluid flow such as drag and lift forces, wake  

characteristics, frequency of vortex effusion phenomenon, etc. Also, studying the 

effects of the parameters affecting the cylinder heat transfer rate with the surrounding 

fluid has great importance in the industry for cooling the electronic components, 

designing heat exchangers, designing equipment for heat processing of foodstuffs, 

etc. In addition, studying this subject will provide a good opportunity for research-

ers to increase their theoretical understanding of different flow phenomena. On the 

other hand, polymer and multiphase systems in food, polymeric and pharmaceuti-

cal industries generally have non-Newtonian behaviors, and despite the relatively 

high occurrence of this behavior in the industry, there are few studies on the non-

Newtonian flow around a square cross-section cylinder. In recent years, many 

scholars have studied the flow and heat transfer in non-Newtonian fluids around 

square [1-7] and circular [7-10] cylinders, and a large amount of information from 

flow and heat transfer characteristics has been collected on these references. For 

example, Dhiman et al. [1] investigated the hydrodynamic and thermal parameters 

of a square cylinder enclosed in a two-dimensional channel and their aim was to 

investigate the effect of the Péclet number and of the Obstruction effect on flow 

and heat transfer. Nitin et al. [2] studied the effect of the Reynolds number and 

power index on a rectangular cylinder, and their purpose was to study the Prandtl 

number effect on the heat transfer characteristics. Dhiman [3] investigated the ef-

fect of the Reynolds number and the power factor and the Prandtl number on ob-

struction. Yoon et al. [4] studied the flow and heat transfer parameters of a square 

cylinder in a two-dimensional channel, and they investigated the effect of the angle 

of deviation. Mousavi et al. [5] studied the flow and heat transfer from a square 

cylinder in a two-dimensional channel by using the MRT-Lattice Boltzmann com-

bination method. Their aim was to investigate the effect of the angle of deviation 

on the characteristics of flow and heat transfer. Aboueian et al. [6] studied the flow 

and heat transfer of a square cylinder enclosed in a two-dimensional channel. Their 

aim was to study the parameters of the power law factor, Reynolds number, angle 

of deviation in the constant Prandtl number and the constant obstruction ratio. 

Dulhani et al. [7] studied the flow and mixed heat transfer of a square cylinder  

enclosed in a two-dimensional channel. Their goal was to study the angle of impact 

and its effect on the flow and mixed heat transfer. 

The overall convective heat transfer from smooth circular cylinders was studied 

by Morgan [8]. A numerical solution of the steady-state Navier-Stokes and energy 

equations around a horizontal cylinder at a low Reynold’s number was presented [9]. 

Zdravkovich presented the application of the flow around circular cylinders [10, 11]. 

Dhiman et al carried out the steady flow across a confined square cylinder [12].  
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A two dimensional steady flow of a power-law fluid past a square cylinder in a plane 

channel was presented by Gupta et al. [13]. Bouaziz et al. [14]  predicted the flow 

and heat transfer of power-law fluids in a plane channel with a built-in heated 

square cylinder. Bhatti et al. [15-19] presented some analytical and computational 

methods solving different problems. They solved an analytical simulation of the 

head-on collision by means of a singular perturbation method. 

Based on cited works, it can be noted that there is a lack of study on the effect of 

different obstruction ratio, aspect ratio and Reynolds number on the non-Newtonian 

fluid flow behaviour around the rectangular channel. Therefore, in the present  

paper, the characteristics of the flow and heat transfer of power law non-Newtonian 

fluids in the long rectangular cylinder are investigated by using FVM in a steady 

state flow regime. This paper is drawn as follows: Section 2 is described the geom-

etry and statement of the problem. Mathematical formulations of the continuity, 

momentum and energy equations are explained in Section 3. The statement of the 

problem and validation solution are given in Sections 4 and 5, respectively. Section 

6 presents the numerical results of the drag and flow field and the effect of the 

Nusselt number. Finally, a conclusion is given in Section 7. 

2. Geometry and problem statement 

We consider the non-Newtonian and incompressible fluid flows through the long 

channel around the square cylinder. This case is illustrated in Figure 1. The flow 

with the parabolic velocity profile by maximum speed Umax and the uniform tem-

perature Tin is entered into the channel. The channel inlet distance to the center of 

the cylinder is Lu, and the length of the channel from the center of the cylinder to 

the output edge of the channel is Ld, and the distance from the lowest point of the 

channel to the center of the cylinder is Hd and the distance from the center of the 

cylinder to the highest point of the channel is Ht. The channel wall is also thermally 

insulated and the sides of the body enclosed in the channel are kept at a constant 

temperature of Tw. The purpose of this study is to investigate the flow and heat 

transfer of a laminar and non-Newtonian fluid flow numerically. Fluid properties 

are given in Table 1. 

 

 

Fig. 1. Problem geometry 
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Table 1. Physical properties of the fluid 

m [Pa·sn] cp [J/kg·K] k [W/m·K] ρ [kg/m3]  

60 149 298 1200 Fluid 

3. Computational method 

3.1. Mathematical formulation 

• Continuity equation 

According to Eulerian’s scheme, the mass conservation law or the Continuity 

equation is: 

 
D

V 0
Dt

ρ
+ ρ∇⋅ =  (1) 

here ρ is the density, V is the vector velocity of the fluid (including the components 

u,v and w in the Cartesian coordinate system) and 
D

Dt
 is the total derivative opera-

tor, which is generally defined as follows: 

 
D

V
Dt t

ϕ ∂ϕ
= + ⋅∇ϕ
∂

 (2) 

Equation (1) expresses more than the fact that mass is conserved. Since it is partial 

differential equation, the implication is that the velocity is continuous. For this rea- 

son, it is usually called the continuity equation. For incompressible fluid 
D

0
Dt

ρ = 
 

 

two-dimensional flow in the Cartesian coordinate system is as follows: 

 
u v

0
x y

∂ ∂
+ =

∂ ∂
 (3) 

• Momentum equations 

To balance forces in a controlled volume at a moment, using the Newton’s 

second law, the momentum equation is: 

 
DV

F
Dt

ρ =∇⋅σ +  (4) 

where F and σ represent the vector of body forces and the stress tensor respectively. 

The stress tensor is defined: 

 pI Tσ = − +  (5) 
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where p, I, and ijT = τ  represent the total isentropic pressure of the characteristic 

tensor and the additional stress tensor or shear rate respectively. 

By substituting equations (2) and (5) in equation (4), this equation will be as follows: 

 
V

V V F ( pI T)
t

∂ ρ + ⋅∇ − =∇⋅ − + ∂ 
 (6) 

For incompressible non-Newtonian fluids, the additional stress tensor is defined  

as follows: 

 ij ij2τ = ηε  (7) 

where εij is the strain rate tensor and η is the apparent viscosity. Regarding the  

two-dimensional problem in the Cartesian coordinate system, the strain rate tensor 

will be as follows: 

 
ji

ij

j i

v1 v

2 x v

 ∂∂
ε = +  ∂ ∂ 

 (8) 

According to the equation (8), the tensor components of the strain rate in the Carte-

sian coordinate system in the two-dimensional state will be as follows: 

 
xx yy xy yx

u v 1 v u
, ,

x y 2 x y

 ∂ ∂ ∂ ∂
ε = ε = ε = ε = + ∂ ∂ ∂ ∂ 

 (9) 

The apparent viscosity is defined differently depending on the problem-solving 

model. In the power law model, the apparent viscosity η is expressed by the fol-

lowing equation: 

 

(n 1)
2

2I
m

2

−

 η =  
 

 (10) 

here m is the fluid concentration coefficient, n is the power law factor and I2 is  

the second inertia of the strain tensor. The concentration coefficient is equal to  

the average viscosity of the fluid. The second inertia of the strain tensor is defined 

as follows: 

 
2 2 2 2

2 xx yy xy yxI 4( )= ε + ε + ε + ε  (11) 

by substituting equations (9) and (11) in equations (2)-(10), the apparent viscosity 

for the power law fluid will be obtained: 

 

(n 1)
2 2 22

u v v u
m 2 2

x y x y

−

    ∂ ∂ ∂ ∂ η = + + +      ∂ ∂ ∂ ∂      
 (12) 
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So generally, for the power law model, equation (7) has following form: 

 

(n 1)
2 2 22

ij ij

u v v u
2m 2 2

x y x y

−

    ∂ ∂ ∂ ∂ 
τ = + + + ε      ∂ ∂ ∂ ∂      

 (13) 

By simplifying these components according to the boundary conditions of the 

problem, the simplified form of the equation will be obtained. According to the 

problem geometry, and since the second component of velocity is zero, the equa-

tion (12) is expressed as follows: 

 

xx xx

(n 1)
2 2 22

xx

2

u v v u u
2m 2 2

x y x y x

−

τ = η ε

    ∂ ∂ ∂ ∂ ∂   τ = + + +       ∂ ∂ ∂ ∂ ∂        

 (14) 

 

yy yy

(n 1)
2 2 22

yy

2

u v v u v
2m 2 2

x y x y y

−

τ = η ε

      ∂ ∂ ∂ ∂ ∂ τ = + + +        ∂ ∂ ∂ ∂ ∂        

 (15) 

(n 1)
2 2 22

xy yx xy

u v v u 1 v u
2 2m 2 2

x y x y 2 x y

−

        ∂ ∂ ∂ ∂ ∂ ∂ τ = τ = η ε = + + + +          ∂ ∂ ∂ ∂ ∂ ∂         
 (16) 

 

n 1
u

m
y

−

 ∂
η =  ∂ 

 (17) 

The strain rate is also simplified as follows: 

 
yx

1 u

2 y

 ∂
ε =  ∂ 

 (18) 

In the end, according to equation (16), the additional stress equation in power law 

non-Newtonian fluid for the simple Couette flow in the xy plane is: 

 

n

yx

u
m

y

 ∂
τ =  ∂ 

 (19) 

Therefore, due to the two-dimensional problem in the Cartesian coordinate system, 

the momentum equations have the following form: 
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Momentum equations in x direction: 

 
yxxx

u u u p
u v

t x y x x y

∂τ ∂ ∂ ∂ ∂ ∂τ
+ρ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

 (20) 

Momentum equations in y direction: 

 
xy yyv v v p

u v
t x y y x y

∂τ ∂τ ∂ ∂ ∂ ∂
+ρ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

 (21) 

where, i jτ  is obtained from equations (14), (15) and (16). 

• Energy equation 

For an incompressible fluid with constant properties and in a 2D steady state 

flow, considering the viscous losses term, the first law of thermodynamics or the 

energy equation related to the temperature is: 

2 2

xx xy yy2 2
p p

T T T k T T 1 u u v v
u v

t x y c c x y x yx y

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + τ + τ + + τ    ∂ ∂ ∂ ρ ρ ∂ ∂ ∂ ∂∂ ∂     

 (22) 

here T is the absolute temperature, k is the conduction coefficient and cp is the spe-

cific heat at constant pressure. The second term on the right hand side of the equa-

tion is the viscous loss. By replacing the values of additional stresses which are 

gained from equations (9) and (11), the energy equation is expressed as: 

2 222 2

2 2
p p

T T T k T T u u v v
u v 2 2

t x y c c x y x yx y

      ∂ ∂ ∂ ∂ ∂ η ∂ ∂ ∂ ∂ + + = + + + + +        ∂ ∂ ∂ ρ ρ ∂ ∂ ∂ ∂∂ ∂         
 (23) 

3.2. Boundary condition 

• Boundary condition in a channel inlet 

The speed at the channel inlet is assumed to be fully developed. Also, the fluid 

temperature at the inlet is: 

 

(n 1)
n

max in

2y
u U 1 , v 0, T T

H

+ 
 = − = =
 
 

 (24) 

here H Hy
2 2

− ≤ ≤  and Umax are the maximum speed at the input. 
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• Boundary condition of the upper and lower walls of channel 

The upper and lower walls of the channel are stationary and the no-slip condi-

tion is also confirmed. The walls are also thermally adiabatic: 

 
T

u 0, v 0, 0
y

∂
= = =

∂
 (25) 

• Square barrier boundary condition 

The barrier is stationary in the channel and the no-slip condition is also present-

ed and the barrier is in the constant temperature: 

 
w

u 0, v 0, T T= = =  (26) 

• Boundary condition in channel outlet 

The flow in the output is assumed to be fully developed in terms of the velocity 

and temperature field. The physical interpretation of this choice is that the barrier 

inside the channel has no effect on the output stream. For this purpose, the output 

boundary should be sufficiently far away from the barrier to prevent any effect on 

the flow at the output: 

 
u v T

0, 0, 0
x x x

∂ ∂ ∂
= = =

∂ ∂ ∂
 (27) 

4. Statement of the problem 

The FVM has been used to solve the problem by using the Fluent CFD package. 

The SIMPLE algorithm was used for speed and pressure field coupling and the 

upwind second order algorithm was used for discretization of the governing equa-

tions. The convergence criterion was considered 10
–6

. The Reynolds number is  

defined as 
2 n n

max
U b

Re
m

−

ρ
=  for a power law non-Newtonian fluid flow. The sides 

aspect ratio (α) is defined as the ratio of the horizontal side to the vertical side  

and the obstruction ratio (β) defined as the vertical length of the barrier to the width 

of the channel. 

4.1. Study of computational domain of solution 

In this section, the mesh size or suitable mesh for grid generation of the problem 

will be determined. To find more accurate answers, the suitable mesh size has to be 

determined for the final solution to the problem. In this paper, the criteria of abso-

lute error less than 1% is used for the selection of a proper mesh in x and direc-

tions. It is also notable that all the results presented here are for ρ = 1200 kg/m
3
, 
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cp = 149 J/kg·K, Tin = 300 K, Tw = 313.42 K. According to the research of Aboueian 

et al. [6], the values of Lu and Ld are 10 and 12 m, respectively. The mesh sample 

pattern is available in Figure 2. 

 

 

Fig. 2. The mesh scheme in a part of solution field 

These areas include five types of mesh. For example, meshes used in the vicinity 

of the barrier and the channel walls are chosen smaller due to the significant values 

of the speed and temperature gradients in these zones. The length and height of the 

channel and the dimensions of the barrier and other parameters are shown in Figure 2. 

By using the grid compression method, Figure 2 was used to obtain an optimal 

grid. An optimal grid is also tabulated in Table 2. From Table 2, it is concluded 

that in grid No. 3 (G3), the drag coefficient error is less than 1%, so the independ-

ence of the grid is proven. 

Table 2. Finding optimal grid 

Cd 
Number of 

Cells 
∆y2 ∆y1 ∆x3 ∆x2 ∆x1 Grid 

1.5594 1259 0.08 0.08 0.6 0.04 0.6 G1 

1.5847 4673 0.04 0.04 0.3 0.02 0.3 G2 

1.5949 18344 0.02 0.02 0.15 0.01 0.15 G3 

1.5949 72400 0.01 0.01 0.075 0.005 0.075 G4 

5. Validation of numerical method 

To verify the validity of the numerical method used in this research, the follow-

ing problem is solved analytically and numerically and the results are compared 

with each other. 
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5.1. Expression of the problem defined for validation 

As may be seen in Figure 3, water flow with the characteristics of ρ = 998.2 kg/m
3
 

and µ = 0.001003 kg/m·s is entered to a pipe with diameter D = 0.1 m and length 

L = 30 m at a speed of = 0.008 m/s and it’s exited at pressure p0 = 0 Pa. The goal  

is to compare the numerical solution with the analytical solution. 

 

 

Fig. 4. Velocity profile on line x = 17 m Fig. 3. Problem geometry 

For validation, the axial velocity to channel width ratio has been plotted in  

Figure 4. The obtained average error shows good accordance between our CFD  

results with analytical data by less than 1% error. 

5.2. Problem solution validation 

To validate the solution, research has been done such as the following, which 

has been studied in various conditions. The results of this paper are in good agree-

ment with the work of other researchers. The following results in Table 3 are  

obtained for the obstruction ratio b = 1/8 and the side ratio a = 1 (square object). 

Table 3. Comparison of drag coefficient 

Bouaziz et al. 

[14] 

Gupta et al. 

[13] 

Dhiman et al. 

[12] 

Aboueian 

et al. [6] 
Present 

Power law 

of fluid (n) 
Re 

– 6.338 6.355 6.682 6.536 0.5 5 

– 5.549 5.849 5.975 5.482 1  

– 4.948 5.038 5.320 5.122 1.4  

– 3.787 3.889 3.844 3.552 0.5 10 

– 3.511 3.633 3.700 3.643 1  

– 3.295 3.309 3.499 3.474 1.4  

2.465 2.5 2.437 2.374 3.343 0.5 20 

2.372 2.448 2.442 2.486 2.460 1  

2.545 2.399 2.374 2.494 2.486 1.4  

1.769 1.879 1.59 1.607 1.619 0.5 40 

1.752 1.864 1.752 1.781 1.779 1  

1.921 1.871 1.801 1.871 1.870 1.4  
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6. Results 

6.1. Drag and flow field 

For a particular geometry, the total drag coefficient (even the compression and 

friction drag coefficients) is a function of the Reynolds number and the power  

index n. In the case of n = 1, the fluid will be a Newtonian fluid, and the viscosity 

coefficient (m) will be equal to the viscosity (µ) of the fluid. The total drag coeffi-

cient is obtained from the equation 2

d d max
C 2F / bU= ρ , where Fd is the drag force 

applied by the fluid on the body. The effect of power index (n) on the drag coeffi-

cient for condition α = 1 and β = 1/8 is shown in Figure 5. According to Figure 5, 

the drag coefficient is reduced by increasing the Reynolds number. Aboueian et al. 

[6], in numerical solution of their research with 149 points of numerical data, pre-

sented an equation for the drag coefficient according to the parameters of the Rey-

nolds number, the rotation angle of the body and the power index which for leading 

problem with zero rotation angle is: 1.2735 + 6.6188 × Re
–1.0366

 (n + 2.7268)
1.6214

. 

The comparison of the accuracy of this equation with our CFD data is shown in 

Figure 6. As it shown in Figure 6, this equation has a big error that is higher in 

lower Reynolds numbers. 

 

  

Fig. 5. The effect of power index (n) on drag 

coefficient for condition α = 1 and β = 1/8 

Fig. 6. Comparing the Aboueian equation 

with the results of the present study 

The effect of the Reynolds number on the drag coefficient under condition α = 1, 

α = 2, and α = 0.5 for different obstruction ratios are plotted in Figures 7, 8 and 9, 

respectively. Increasing in the obstruction ratio increases the drag coefficient.  

But this increasing is limited and, in an obstruction ratio less than 0.5, its effect is 

negligible. The effect of the Reynolds number on the drag coefficient in different 

sides ratios for condition β = 0.5 is also presented in Figure 10. 
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Fig. 7. The effect of Reynolds number on drag 

coefficient in different obstruction ratios 

for condition α = 1 and n = 1.4 

Fig. 8. The effect of Reynolds number on drag 

coefficient in different obstruction ratios 

for condition α = 2 and n = 1.4 

  

Fig. 9. The effect of Reynolds number on drag 

coefficient in different obstruction ratios 

for condition α = 0.5 and n = 1.4 

Fig. 10. The effect of Reynolds number on drag 

coefficient in different sides ratios 

for condition β = 0.5 and n = 1.4 

6.2. Nusselt number 

The local Nusselt number is defined as Nu = hy/k, which y is the characteristic 

length on the solid body’s width and it’s considered as a constant in all conditions. 

Nusselt number diagram on the barrier width in different Reynolds numbers and 

for conditions α = β = 0.5 and n = 1.4 is presented in Figure 11. In Figure 11, the 

effect of the obstruction ratio on the Nusselt number is observed, which by increas-

ing the obstruction ratio, the average Nusselt number increases. The Nusselt num-

ber diagram on the barrier width in obstruction ratios and for conditions Re = 40, 

α = 0.5 and n = 1.4 is also shown in Figure 12. Figure 12 shows that with increas-

ing Reynolds number, the vortexes behind the solid body increase and increase  
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the heat transfer and increase the heat transfer coefficient. Also, on the above  

and below edges of the solid body, due to the destruction of the boundary layer,  

the Nusselt number has high value. In addition, the effects of the sides ratio on  

the Nusselt number is obvious in Figure 12, where as the sides ratio increases,  

the Nusselt number is decreased. Nusselt number diagram on the barrier width in  

different sides ratios and for conditions Re = 40, β = 0.5 and n = 1 is also presented 

in Figure 13. 
 

  
Fig. 11. Nusselt number diagram on the barrier 

width in different Reynolds numbers and 

for conditions α = β = 0.5 and n = 1.4 

Fig. 12. Nusselt number diagram on the barrier 

width in obstruction ratios and for conditions 

Re = 40, α = 0.5 and n = 1.4 

 

Fig. 13. Nusselt number diagram on the barrier width in different sides ratios 

and for conditions Re = 40, β = 0.5 and n = 1 

7. Conclusions 

In this current study, the effect of the obstruction ratio and the sides ratio of  

a rectangular cylinder enclosed in a 2D channel with a power law non-Newtonian 
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fluid was numerically investigated. Comparison of our CFD results were validated 

with archival data. Drag coefficients were evaluated as a function of the Reynolds 

number, the obstruction ratio and sides ratio, and it was found that by increasing 

the Reynolds number, the drag coefficient is decreased for a specific fluid. However, 

for different fluids, the increase in the power index and the Reynolds number is 

cause of decreasing of drag coefficient. By investigating the effect of obstruction 

on the drag coefficient, we found that the drag coefficient is increased with increas-

ing the obstruction ratio. The same result is obtained by increasing the sides ratio. 

Moreover, the Nusselt number increases on the back of the body due to the exist- 

ence of vortexes but at the edges of the body, due to the destruction of the boundary 

layer, the Nusselt number is much higher. We  also conclude that with increasing 

the Reynolds number, the Nusselt number increases and by increasing the obstruc-

tion ratio, the average Nusselt number is increased. It is also found that, as the sides 

ratio increases, the Nusselt number is decreased due to the increase in the growth 

of the boundary layer. 
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