
Journal of Applied Mathematics and Computational Mechanics 2019, 18(1), 77-87

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2019.1.07 e-ISSN 2353-0588

AN INSIGHT INTO THE EVOLUTION OF ROTATION

OPERATOR TO QUATERNION’S.

COMPUTER GRAPHICS PERSPECTIVE

Saad Bin Sami, Humera Tariq

Department of Computer Science, University of Karachi

 Karachi, Pakistan

saadbinsami121@gmail.com, humera@uok.edu.pk

Received: 8 April 2019; Accepted: 24 April 2019

Abstract. Rotations are an integral part of various computational techniques and mechan-

ics. The objective in this paper is twofold: first to have a classical insight into the history of

quaternions, a problem that Hamilton faced for over a decade and secondly to look at into

its applications from computer graphics perspective. Thorough revision of quaternion alge-

bra and its use case as a rotation operator has been presented. A quaternion simulation

algorithm has been written and practiced to generate simulation results. Results show that

though quaternions supersede Euler angles technically but are tricky to use and control for

e.g. when same quaternion is applied on a different vector axis, the particle is not able to

reach its initial position and an incomplete rotation effect has been recorded and observed.

MSC 2010: 65D18, 97R60

Keywords: rotation, affine, transformation OpenGL, visualization

1. Introduction

Translation, scaling and rotation are three primitive Affine Operations in Com-

puter Graphics for modeling, animation, viewing, and creating special techniques

for e.g. Frenet frame and Bill boarding [1]. The transition of all these operations

from an equation form into their counterpart matrices is itself an interesting phe-

nomena for early stage computer scientists. If a programmer is asked to develop

a routine for rotation, he or she might consider this problem as a computation of

new coordinates x, y and z with older object coordinates as input through equations

as a key process. An experienced developer, on the other hand, knows very well

that composition of transformations is computationally efficient which involves

representing each primitive transformation by a 4 × 4 homogenous matrix. The

homogenous representation not only facilitate the discrimination between a point

and vector in the same Euclidean space (world space) but also allows merging of

S.B. Sami, H. Tariq 78

translation with other transformations through matrix multiplication [2]. The scheme

also allows to maintain a transformation stack for manipulation of articulated objects

and supports the splendid concept of coordinate system transformation (top down

machine thinking) in contrast to object transformation (bottom up human mind

thinking) [1, 3]. The nutshell behind all this is the Euler’s rotation theorem which

states that: ”Any rotation (or sequence of rotations) about a fixed point is equiva-

lent to a single rotation about some axis through that point” [3, 4]. The theorem led

the most simplest definition of rotation in Open GL as glRotated (angle, ux, uy, uz)

which means that a graphics developer simply provides the angle and specific

axis ’u’ about which rotation is required. The complex matrix that works behind;

establishes a 2D coordinate system with the help of two orthogonal vectors taking

the following form:

����� = ⎣⎢⎢
⎢⎡
 + �1 −
���2 �1 −
����� − ��� �1 −
����� + ��� 0�1 −
����� + ���
 + �1 −
���2 �1 −
����� − ��� 0�1 −
����� − ��� �1 −
����� + ���
 + �1 −
���2 00 0 0 1⎦⎥⎥

⎥⎤
 (1)

where
 = cos���, � = sin���, and ��� , ��, ��� are the components of the unit

vector �. Quaternions are computationally more efficient operators to describe the

orientation of an object in a world space. They do not get stuck in a Gimbal Lock

Situation nor cause an interpolation problem and are thus more suited for a machine

oriented paradigm to approach rotation in comparison to constructive Euler angles

base ambiguous rotation operator definition as described in (1) [5]. The recent

decade has witnessed the interest of researchers into quaternion for a variety of

applications including but not limited to modeling, animation and quaternion based

estimation [6, 7]. The rest of the paper is organized as follows: Section 2 provides

a historical overview of quaternions along with key algebraic manipulations and

Rotation. The subsequent Section 3 and Section 4 will contain the detailed descrip-

tion of a rotation operator and its transformation into the matrix form for comput-

ing applications is presented in the end of Section 5. Simulation in C++ with

OpenGL and Python with Jupyter Notebook is presented in Section 6. Finally

conclusion and future work is described in the end.

2. Historical overview of quaternion’s

In the early 19
th
 century, mathematicians were interested in the question ”can

we represent complex numbers in a three dimensional space?”. The answer to this

question was not obvious and many mathematicians, including Gauss, Möbius,

Grassmann, and Hamilton had been searching for the answer. Hamilton was work-

ing under the assumption that new algebra would be a super set of the already

established Complex Number Algebra [8, 9]. However the problem that puzzled

An insight into the evolution of rotation operator to quaternion’s. Computer graphics perspective 79

Sir Hamilton over a decade was multiplication of two triplets. The multiplication

of �� = �� + ��� + ��	 with �
 = �
 + �
� + �
	 violates Morgan’s Law of com-

mutation as (�)
 = ±1 showing that �	 ≠ 	� which in turn violates the law of

modulus causing the length of the product of two vectors to not be the same as

the product of the lengths of two original vectors as demonstrated via example

in Table 1 for:

���
 = (1 + 2� + 6)(−4 + 3� + 7).

Table 1. Violation of complex triplet multiplication and modulus law when �� = �

(1 + 2i + 6j)(–4 + 3i + 7j) ={–4 – 6 – 42 + 14 + 18} + {3 – 8}i + {7 – 24}j
= –20 – 5i – 17j = x2 + y2 + z2

Product of length of two original vectors = (a 2 + b 2 + c 2) (d 2 + e 2 + f 2)

 = (1 + 4 + 36)(16 + 9 + 49)

 = (41)(74) = 3034

Product of two vectors = –20 – 5i – 17j
Length of product of two vectors = 202 + 52 + 172 = 200 + 25 + 289 = 514

Clearly the law of modulus is violating as 3034 ≠ 514 and thus (a 2 + b 2 + c 2)(d 2 + e 2 + f 2)
≠ x2 + y2 + z2

The same reasoning of Table 1 can be done for the case when �	 = −1. The

solution to the aforementioned problem is treating the vector as a quadruple rather

than a triplet, and Hamilton led the definition of a quaternion q and its associated

rules as follows:

 - = ./ + .�� + .
	 + .01 = 2./ + .⃗4 (2)

where .⃗ = .�� + .
	 + .01 and �
 = 	
 = 1
 = �	1 = −1.

Hamilton showed courage to deny Morgan’s Law of Commutation for Algebra

and turned the imaginary terms i, j, k into unit Cartesian vectors i, j, k, but Simon

Altman’s suggestion is to replace the imaginaries by the ordered pairs: i = [0, i]

j = [0, j] k = [0, k] which are themselves quaternions, and called quaternion units

[8, 10].

2.1. Quaternion Algebra

Let 5 = 6/ + �6� + 	6
 + 160 and - = ./ + �.� + 	.
 + 1.0. Addition will

be done in component wise manner with both commutativity and associativity

intact

 5 + - = (6/ + ./) + �(6� + .�) + 	(6
 + .
) + 1(60 + .0) (3)

It is important to look at details of multiplying two quaternions as follows:

5- = (6/./ + �6/.� + 	6/.
 + 16/.0) + (�6�./ + �
6�.� + �	6�.
 + �16�.0) +

(6
./ + 	�6
.
 + 	16
.
 + 	16
.0) + (160./ + 1�60.� + 1	60.
 + 1
60.0

S.B. Sami, H. Tariq 80

Using interaction properties of vectors from (4), equation (3) can be transformed

into Eq. (5) by the steps described below: $& = %& = D& = $%D = −1;
 $% = D, %D = $, D$ = %; (4) %$ = −D, D% = −$, $D = −% H@ = �IBAB + $IBA! + %IBA& + DIBAC� + �−I!A! + $I!AB − %I!AC + DI!A&�

 +�−I&A& + $I&AC + %I&AB − DI&A!� + �−ICAC − $ICA& + %ICA! + DICAB� (5)

Table 2 represents steps to complete multiplication in equation (6).

Table 2. Intermediate and final steps for Quaternion Multiplication

 H@ = IBAB − �I⃗ ∙ A⃗� + IBA⃗ + ABI⃗ + �I⃗ × A⃗�

In equation (6), the term IBAB − �I⃗ ∙ A⃗� is scalar and the term IBA⃗ + ABI⃗ + �I⃗ × A⃗�
is a vector but since the term I⃗ × A⃗ is non commutative so the quaternion product

also inherently becomes non-commutative.

2.2. Complex conjugate, norm and inverse

The complex conjugate of quaternion �@ = AB + A⃗ = AB + $A! + %A& + DAC� is:

 @∗ = AB + NOO⃗ ∗ = AB − $A! − %A& − DAC (7)

The norm of the quaternion A is denoted by P�A� or|P| and sometimes called

the length of the quaternion and is given by equation (8):

P�@� = RQ ∗ Q P&�A� = �AB − A⃗��AB + A⃗� = 0 = ABAB − �−A⃗� ∙ A⃗ + AB�A⃗� + AB�−A⃗� + �A⃗ × A⃗� using Eq. (6)

 P&�@� = AB& + �A⃗ ∙ A⃗� = AB& + A!& + A&& + AC& = AB& + |A|& (8)

For every non-quaternion, we can calculate the inverse. By definition of inverse: AT!A = AAT! = 1

(6)

An insight into the evolution of rotation operator to quaternion’s. Computer graphics perspective 81

By pre and post multiplication of complex conjugate: A∗AAT! = AAT!A∗ = A∗

Since A ∗ A = P&�@�, we get: AT! = A∗ P&�A�⁄

The quaternion with the norm = 1 is called a Unit Quaternion.

3. Quaternion rotation operator

The quaternion operator A can be applied on a given vector V⃗ to get the image A⃗which may serve as desired rotated vector W = AV⃗. Expressing WOO⃗ and V⃗ into its

real and imaginary components: WOO⃗ = �AB + A⃗��0 + V⃗� = AB�0� − A⃗ ∙ V⃗ + 0�A⃗� + ABV⃗ + A⃗ × V⃗

This computation shows that the image WOO⃗ is not necessarily in @B. As it is not

guaranteed that the term �−A⃗ ∙ V⃗� is always zero. The product V⃗A will not work

either as commuting the factors will not change the real part either. Thus we cannot

expect our quaternion rotation operator to simply consist of a single quaternion.

These observations led to the thinking that desired rotation operator may involve

triplets or perhaps even a higher order product. Let @ and � be two quaternion and I⃗ be the pure quaternion (representing the desired vector to be rotated). Then there

are 6 possibilities of these factors [11]: I⃗QR, I⃗�@, QRI⃗, RQI⃗, RI⃗Q, QI⃗R. Now we

know that the set of quaternions except pure quaternions (a quaternion Q ϵ RZ

whose real part is zero is called pure quaternion) are closed under multiplication.

Thus the product of the first four combinations will produce the product of a quater-

nion and a pure quaternion as demonstrated recently in this section. The last hope

will be RI⃗Q and QI⃗R; both of them are similar [11].

Let’s solve QI⃗R. Let Q = qB + A⃗; I⃗ = 0 + I⃗ and R = rB +]⃗. Then the real part

of the product QI⃗R will be: @HO⃗ � = �AB + A⃗� �0 + I⃗��]B +]⃗� @HO⃗ � = �AB�0� − A⃗ ∙ I⃗ + A⃗�0� + ABI⃗ + A⃗ₓI⃗��]B +]⃗� @HO⃗ � = �−A⃗ ∙ I⃗ + ABI⃗ + A⃗ₓI⃗��]B +]⃗�

Let us suppose for our simplicity that: �B = − A⃗ ∙ I⃗ and �⃗ = ABI⃗ + A⃗ₓI⃗.

So, QI⃗R = ��B + �⃗��]B +]⃗�

Now QI⃗R = �B]B − �⃗ ∙]⃗ + �⃗]B +]⃗�B + �⃗ₓ]⃗

But �B = − A⃗ ∙ I⃗ and �⃗ = ABI⃗ + A⃗ₓI⃗ QI⃗R = �− A⃗ ∙ I⃗�]B − �ABI⃗ + A⃗ₓI⃗� ∙]⃗ + �ABI⃗ + A⃗ₓI⃗�]B +]⃗�− A⃗ ∙ I⃗� + �ABI⃗ + A⃗ₓI⃗�ₓ]⃗

S.B. Sami, H. Tariq 82

Here, the real part is = �−A⃗ ∙ I⃗�]B − �ABI⃗ + A⃗ₓI⃗� ∙]⃗

 = −]B�A⃗ ∙ I⃗� − AB�I⃗ ∙]⃗� − �A⃗ₓI⃗� ∙]⃗

 = −]B�A⃗ ∙ I⃗� − AB�I⃗ ∙]⃗� − �−I⃗ₓA⃗� ∙]⃗

 = −]B�A⃗ ∙ I⃗� − AB�I⃗ ∙]⃗� + �I⃗ₓA⃗� ∙]⃗

Here �I⃗ₓA⃗� ∙]⃗ is a vector triple product. And by vector algebra �IO⃗ ₓAO⃗ � ∙]⃗ = �I⃗ₓ]⃗� ∙ A⃗. So, the real part is = −]B�A⃗ ∙ I⃗� − AB�I⃗ ∙]⃗� + �I⃗ₓ]⃗� ∙ A⃗

Let]B = AB; is = −AB�A⃗ ∙ I⃗� − AB�I⃗ ∙]⃗� + �I⃗ₓ]⃗� ∙ A⃗

 = −AB�A⃗ ∙ I⃗ − I⃗ ∙]⃗� + �I⃗ₓ]⃗� ∙ A⃗

 = −AB�A⃗ −]⃗� ∙ I⃗ + �I⃗ₓ]⃗� ∙ A⃗

Clearly the real Part will be zero, when AO⃗ = −]⃗. And we have already supposed

that]B = AB. So this means that � =]B +]⃗ = AB + A⃗ = @*

So, Q = R* and R = Q*

So our quaternion rotation operator will be @I⃗@* or @*IO⃗ @. Both of these

operators will produce the required pure quaternion i.e. WOO⃗ ! = @I⃗@* or WOO⃗ 1 = @*IO⃗ @.

4. Trigonometric encoding and geometry of quaternion’s rotation

Let the quaternion @ = AB + A⃗ be a unit quaternion. We know that: P&�@� = = AB& + |A|& = 1. We also know that, _`�&a + b$c&a = 1.

Comparing the two facts: _`�&a = AB& and b$c&a = |A|&. Let �O⃗ be a unit

vector. The unit quaternion can be encoded using trigonometric identities as follows: @ = _`�a + �O⃗ b$ca.

If we substitute angle to be – a. Then

 @* = _`�a – �O⃗ b$ca (9)

Let @ = _`�a + �O⃗ b$ca then @* = _`�a – �O⃗ b$ca and V⃗ = 0 + % (the vector to

be rotated) and let a = 45 = d/4 and �O⃗ = $.
Then, @V⃗@∗ = �_`�a + �O⃗ b$ca��0 + %��_`�a – �O⃗ b$ca� = �_`� fZ + bc fZ��0 + %��_`� fZ − bc fZ�

= g√&& + i √&& i �0 + j� g√&& − i √&& i

= j0 − 0 + j √&& + 0 + √&& �iₓj� k g√&& − i √&& i = j0 + j √&& + √&& kk g√&& − i √&& i = 0 − gj √&& + √&& ki . gi √&& i + √&& gj √&& + √&& ki + 0 + gj √&& + √&& ki ₓ gi √&& i

An insight into the evolution of rotation operator to quaternion’s. Computer graphics perspective 83

= j √�� + √�� k + ��
	
 �0 √�� √��√�� 0 0 ��

= j √�� + √�� k − j √�� + √�� k = k
The insight interpretation of the result is as follows. Given a unit quaternion, � = ���� + ��⃗ �	�� and �⃗ = 0 +
 and � = 45 = �/4 and ��⃗ = 	, the vector j

is rotated 90° (twice the given angle) about the axis ��⃗ = 	 in a counterclockwise

direction, and similarly Q∗�⃗Q will rotate the vector in a clockwise direction.

5. Generalized formula and matrix form of quaternion rotation

���⃗ = ��⃗�∗ = (!" + !⃗)(0 + �⃗)(!" − !⃗) = (0 – !⃗ ∙ �⃗ + !"�⃗ + 0 + !⃗x�⃗)(!" – !⃗) = (– !⃗ ∙ �⃗ + !"�⃗ + !⃗x�⃗)(!" – !⃗) = – (!⃗ ∙ �⃗)!" – (!"�⃗ + !⃗x�⃗) ∙ (– !⃗) + (– !⃗ ∙ �⃗)(– !⃗) + !"(!"�⃗ + !⃗x�⃗) + (!"�⃗ + !⃗x�⃗)x(– !⃗) = – (!⃗ ∙ �⃗)!" + !"(�⃗ ∙ !⃗) + (!⃗'�⃗) ∙ (!⃗) + (!⃗ ∙ �⃗)(!⃗) + !"��⃗ + !"(!⃗'�⃗) – !"(�⃗'!⃗) – (!⃗'�⃗)'(!⃗) = (!⃗ ∙ �⃗)(!⃗) + !"��⃗ + !"(!⃗x�⃗)– !"(�⃗x!⃗)– (!⃗x�⃗)x(!⃗) = (!⃗ ∙ �⃗)(!⃗) + !"��⃗ – !"(�⃗x!⃗) – !"(�⃗x!⃗) – (!⃗x�⃗)x(!⃗) = (!⃗ ∙ �⃗)(!⃗) + !"��⃗ – 2!"(�⃗'!⃗) – (!⃗'�⃗)'(!⃗) (10)

Here: – (!⃗'�⃗)'(!⃗) = – [�⃗(!⃗ ∙ !⃗) – !⃗(!⃗ ∙ �⃗)] = – [�⃗|!⃗|� – !⃗(!⃗ ∙ �⃗)] because
 , × . × / = .(, ∙ /) − /(, ∙ .).

Let 0�(�) = !"� + |!|� = 1, so |!⃗|� = 1 – !"�. This assumption clarifies the

use of a unit quaternion in a rotation operator.

So Equation (10) becomes,

���⃗ = (!⃗ ∙ �⃗)(!⃗) + !"��⃗ – 2!"(�⃗x!⃗) – �⃗ + �⃗!"� + !⃗(!⃗ ∙ �⃗) = (!⃗ ∙ �⃗)(!⃗) + 2!"��⃗ – 2!"(�⃗'!⃗) – �⃗ + !⃗(!⃗ ∙ �⃗) = 2(!⃗ ∙ �⃗)(!⃗) + 2!"��⃗ – 2!"(�⃗'!⃗) – �⃗ ���⃗ = ��⃗�∗ = �⃗(2!"� – 1) + 2(!⃗ ∙ �⃗)(!⃗) – 2!"(�⃗'!⃗) (11)

S.B. Sami, H. Tariq 84

Matrix form of quaternion for rotation can be formulated as follows:

V⃗�2AB& – 1� = u�2AB& − 1� 0 �2AB& − 1�0 �2AB& − 1� 00 0 �2AB& − 1�v wV!V&VCx

2�A⃗ ∙ V⃗��A⃗� = u2A!& 2A!A& 2A!AC2A!A& 2A&& 2A&AC2A!AC 2A&AC 2AC v wV!V&VCx

2AB& gV⃗ₓAOOOOOO⃗ i = w 0 −2ABAC 2ABA& 2ABAC 0 −2ABA!−2ABA& 2ABA! 0 x wV!V&VCx

The sum of these components may be written as:

wW!W&WCx = u2AB& − 1 + 2A!& 2A!A& − 2ABAC 2AB& − 1 2A!A& + 2ABAC 2AB& − 1 + 2A&& 2A&AC − 2ABA! 2A!AC−2ABA& 2A&AC + 2ABA! 2AB& − 1 + 2AC&v wV!V&VCx

So, WOO⃗ = QVO⃗ Q∗ = QVO⃗ will give the counterclockwise rotation and WOO⃗ = Q*VOO⃗ Q == QyV⃗ will give the clockwise rotation.

6. Simulation and results

To experiment with quaternions from the computer graphics perspective, we

modify existing Quaternion Code for Intuition Building and simulation on C++

and OpenGL [12]. The existing quaternion implementation treat quaternion as

a composition of 3D vector as shown in Figure 1. To Use Quaternion in a program,

the Simulation Algorithm of Table 1 can be used. The Algorithm has been tested

for a point that resides on a circle as: (cos(t), sin(t),0) and the axis of rotation is set

to (0,0,1), (0,1,0) and (1,0,0) respectively. It has been observed that for rotation

about (0,0,1) i.e. z-axis the point rotates from 0° to 360° but for rotation about the

y-axis (0,1,0) it doesn’t complete the cycle. Rotation about the x-axis (1,0,0) has

been observed as a particle is moving on straight line and depth effect from front

to back is not observable. Quaternion’s simulation results about z and y axis are

shown in Figures 2 and 3 respectively. We also test Quaternion matrix in Python

on Jupyter notebook to rotate Blue vector (image matrix) B around green vector

(green matrix) G where both B and G are of size (600, 400). It is important to note

that Python and OpenCV image library treated RGB as BGR space. Result in

Figure 4 shows that Blue Image is successfully turned into Red through quaternion

operation. The simulation Code is presented in Table 4 for reader convenience.

An insight into the evolution of rotation operator to quaternion’s. Computer graphics perspective 85

Fig. 1. C++ implementation of quaternion as composite object [12]

 Fig. 2. Quaternion rotation about Z-axis Fig. 3. Rotation about Y-axis

Table 3. Algorithm to simulate quaternion

Procedure QuaternionSimultion (function x(u,v: real): real;

 function y(u,v: real); function z(u,v: real): real;

 angle: double; var ,axis: Point3D): q: Quarternion,

 mat: array[1...4,1...4] of real; var

 i: integer; numPoints: integer; incr: integer; Q: Quaternion, p: Point3D

begin

for i:=1 to numPoints do

begin

Q.w = cos(angle/2);

Q.u.x = sin(angle/2)*axis.x;

Q.u.y = sin(angle/2)*axis.y;

Q.u.z = sin(angle/2)*axis.z;

q := Q Q*

mat: = ExportToMatrix(q); mat:= GL_MODELVIEW * mat;

drawRotatedPoint(v.x,v.y,v.z);

end

end

w: scalar of type double

u: 3D vector with components x,y,z

S.B. Sami, H. Tariq 86

Table 4. Python and OpenCV Simulation

Fig. 4. Blue Matrix Rotated Around Green through Quaternion’s

7. Conclusions

In the paper, quaternions as an alternative to a rotation operator have been

studied for simulation from computer graphics perspective. Thorough study of

quaternion algebra has been turned into pseudocode and Python code to be used

(1) (2)

(3)

(4)

(5) (6)

(7) (8)

An insight into the evolution of rotation operator to quaternion’s. Computer graphics perspective 87

for variety of applications. Special cases has been demonstrated for rotation of

a point on circle or sphere around x, y and z-axis. C++, OpenGL and OpenCV has

been used for presenting simulation results. Future work will emphasize on higher

level modeling and animation e.g surface of revolution, bill boarding and Frenets.

References

[1] Hill, F.S. (1999). Computer Graphics using Open GL (Second Edition). Prentice Hall.

[2] Paeth, A.W. (1995). Graphics Gems V. Academic Press.

[3] Shriener, D., Sellers, G., Kessinish, J., & Licea, K.B. (2013). Open GL Programming Guide:
The Official Guide to Learning. (Eighth Edition). Addison Wesley.

[4] Gellert, W., Kiistner, H., Hellwich, M., & Kastner, H. (1975). The VNR Concise Encyclopedia

of Mathematics. Van Nostrand Reinhold.

[5] Pletinckx, D. (1989). Quaternion calculus as a basic tool in computer graphics. The Visual Com-

puter, 5(1), 2-13.

[6] Pavllo, D., Feichtenhofer, C., Auli, M., & Grangier, D. (2019). Modeling Human Motion with
Quaternion-based Neural Networks. Pre print arXiv.

[7] Wei-Hsu, H. et al. (2019). Quaternion-based head pose estimation with multiregression loss.
IEEE Transactions on Multimedia, 21(4), 1035-1046.

[8] Familton, J.C. (2015). Quaternions: A History Of Complex Noncommutative Rotation Groups
In Theoretical Physics. Pre print arXiv.

[9] Van Der Waerden, B.L. (1976). Hamilton’s discovery of quaternions. Mathematics Magazine,
49(5), 227-234.

[10] Vince, J. (2011). Quaternions for Computer Graphics. London: Springer-Verlag.

[11] Kuipers, J.B. (1999). Quaternions and Rotation Sequences: A Primer with Applications to
Orbits, Aerospace, and Virtual Reality. Princeton University Press.

[12] Nielson, F., & River, C. (2005). Visual Computing: Geometry, Graphics and Vision. Charler

Medial Press.

	JAMCM_2019_1_Tytułowe
	JAMCM_2019_1_1-Borysenko
	JAMCM_2019_1_2-Güngör_Arslantürk
	JAMCM_2019_1_3-Lobo
	JAMCM_2019_1_4-Matalytski
	JAMCM_2019_1_5-Noferesti
	JAMCM_2019_1_6-Prajapati
	JAMCM_2019_1_7-Sami
	JAMCM_2019_1_8-Uzny
	JAMCM_2019_1_9-Wróbel
	JAMCM_2019_1_Redakcyjna

