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Abstract. Rotations are an integral part of various computational techniques and mechan-

ics. The objective in this paper is twofold: first to have a classical insight into the history of 

quaternions, a problem that Hamilton faced for over a decade and secondly to look at into 

its applications from computer graphics perspective. Thorough revision of quaternion alge-

bra and its use case as a rotation operator has been presented. A quaternion simulation  

algorithm has been written and practiced to generate simulation results. Results show that 

though quaternions supersede Euler angles technically but are tricky to use and control for 

e.g. when same quaternion is applied on a different vector axis, the particle is not able to 

reach its initial position and an incomplete rotation effect has been recorded and observed. 
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1. Introduction 

Translation, scaling and rotation are three primitive Affine Operations in Com-

puter Graphics for modeling, animation, viewing, and creating special techniques 

for e.g. Frenet frame and Bill boarding [1]. The transition of all these operations 

from an equation form into their counterpart matrices is itself an interesting phe-

nomena for early stage computer scientists. If a programmer is asked to develop  

a routine for rotation, he or she might consider this problem as a computation of 

new coordinates  x, y and z with older object coordinates as input through equations 

as a key process. An experienced developer, on the other hand, knows very well 

that composition of transformations is computationally efficient which involves 

representing each primitive transformation by a 4 × 4 homogenous matrix. The  

homogenous representation not only facilitate the discrimination between a point 

and vector in the same Euclidean space (world space) but also allows merging of 



S.B. Sami, H. Tariq 78 

translation with other transformations through matrix multiplication [2]. The scheme 

also allows to maintain a transformation stack for manipulation of articulated objects 

and supports the splendid concept of coordinate system transformation (top down 

machine thinking) in contrast to object transformation (bottom up human mind 

thinking) [1, 3]. The nutshell behind all this is the Euler’s rotation theorem which 

states that: ”Any rotation (or sequence of rotations) about a fixed point is equiva-

lent to a single rotation about some axis through that point” [3, 4]. The theorem led 

the most simplest definition of rotation in Open GL as glRotated (angle, ux, uy, uz) 

which means that a graphics developer simply provides the angle and specific  

axis ’u’ about which rotation is required. The complex matrix that works behind; 

establishes a 2D coordinate system with the help of two orthogonal vectors taking 

the following form: 

����� = ⎣⎢⎢
⎢⎡ 
 + �1 − 
���2 �1 − 
����� − ��� �1 − 
����� + ��� 0�1 − 
����� + ��� 
 + �1 − 
���2 �1 − 
����� − ��� 0�1 − 
����� − ��� �1 − 
����� + ��� 
 + �1 − 
���2 00 0 0 1⎦⎥⎥

⎥⎤
 (1) 

where 
 = cos���, � = sin���, and ��� , ��, ��� are the components of the unit  

vector �. Quaternions are computationally more efficient operators to describe the 

orientation of an object in a world space. They do not get stuck in a Gimbal Lock 

Situation nor cause an interpolation problem and are thus more suited for a machine 

oriented paradigm to approach rotation in comparison to constructive Euler angles 

base ambiguous rotation operator definition as described in (1) [5]. The recent  

decade has witnessed the interest of researchers into quaternion for a variety of  

applications including but not limited to modeling, animation and quaternion based 

estimation [6, 7]. The rest of the paper is organized as follows: Section 2 provides  

a historical overview of quaternions along with key algebraic manipulations and 

Rotation. The subsequent Section 3 and Section 4 will contain the detailed descrip-

tion of a rotation operator and its transformation into the matrix form for comput-

ing applications is presented in the end of Section 5. Simulation in C++ with 

OpenGL and Python with Jupyter Notebook is presented in Section 6. Finally  

conclusion and future work is described in the end. 

2. Historical overview of quaternion’s 

In the early 19
th
 century, mathematicians were interested in the question ”can 

we represent complex numbers in a three dimensional space?”. The answer to this 

question was not obvious and many mathematicians, including Gauss, Möbius, 

Grassmann, and Hamilton had been searching for the answer. Hamilton was work-

ing under the assumption that new algebra would be a super set of the already  

established Complex Number Algebra [8, 9]. However the problem that puzzled 
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Sir Hamilton over a decade was multiplication of two triplets. The multiplication  

of �� = �� + ��� + ��	 with �
 = �
 + �
� + �
	 violates Morgan’s Law of com-

mutation as (�	)
 = ±1 showing that �	 ≠ 	� which in turn violates the law of  

modulus causing the length of the product of two vectors to not be the same as  

the product of the lengths of two original vectors as demonstrated via example  

in Table 1 for: 

���
 = (1 + 2� + 6	)(−4 + 3� + 7	). 

Table 1.  Violation of complex triplet multiplication and modulus law when �� = �  

(1 + 2i + 6j)(–4 + 3i + 7j) ={–4 – 6 – 42 + 14 + 18} + {3 – 8}i + {7 – 24}j 
= –20 – 5i – 17j = x2 + y2 + z2 

Product of length of two original vectors = (a 2 + b 2 + c 2) (d 2 + e 2 + f  2) 

 = (1 + 4 + 36)(16 + 9 + 49) 

 = (41)(74) = 3034 

Product of two vectors = –20 – 5i – 17j 
Length of product of two vectors = 202 + 52 + 172 = 200 + 25 + 289 = 514 

Clearly the law of modulus is violating as 3034 ≠ 514 and thus (a 2 + b 2 + c 2)(d 2 + e 2 + f  2) 
≠ x2 + y2 + z2 

 

The same reasoning of Table 1 can be done for the case when �	 =  −1. The  

solution to the aforementioned problem is treating the vector as a quadruple rather 

than a triplet, and Hamilton led the definition of a quaternion q and its associated 

rules as follows:  

 - =  ./ + .�� + .
	 + .01 = 2./ + .⃗4 (2) 

where .⃗ =  .�� + .
	 + .01 and �
 = 	
 = 1
 = �	1 = −1. 

Hamilton showed courage to deny Morgan’s Law of Commutation for Algebra  

and turned the imaginary terms i, j, k into unit Cartesian vectors i, j, k, but Simon 

Altman’s suggestion is to replace the imaginaries by the ordered pairs: i = [0, i]  

j = [0, j] k = [0, k] which are themselves quaternions, and called quaternion units 

[8, 10].  

2.1. Quaternion Algebra 

Let 5 =  6/ + �6� + 	6
 + 160 and - = ./ + �.� + 	.
 + 1.0. Addition will 

be done in component wise manner with both commutativity and associativity  

intact 

 5 + - = (6/ + ./) + �(6� + .�) + 	(6
 + .
) + 1(60 + .0) (3) 

It is important to look at details of multiplying two quaternions as follows: 

5- = (6/./ + �6/.� + 	6/.
 + 16/.0) + (�6�./ + �
6�.� + �	6�.
 + �16�.0) + 

(	6
./ + 	�6
.
 + 	16
.
 + 	16
.0) + (160./ + 1�60.� + 1	60.
 + 1
60.0 
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Using interaction properties of vectors from (4), equation (3) can be transformed 

into Eq. (5) by the steps described below: $& = %& = D& = $%D =  −1; 
 $% = D, %D = $, D$ = %; (4) %$ = −D, D% = −$, $D = −% H@ = �IBAB + $IBA! + %IBA& + DIBAC� + �−I!A! + $I!AB − %I!AC + DI!A&� 

  +�−I&A& + $I&AC + %I&AB − DI&A!� + �−ICAC − $ICA& + %ICA! + DICAB� (5) 

Table 2 represents steps to complete multiplication in equation (6). 

Table 2. Intermediate and final steps for Quaternion Multiplication 

 
 H@ =  IBAB − �I⃗ ∙ A⃗� + IBA⃗ + ABI⃗ + �I⃗ × A⃗� 

 

 

In equation (6), the term IBAB − �I⃗ ∙ A⃗� is scalar and the term IBA⃗ + ABI⃗ + �I⃗ × A⃗� 
is a vector but since the term I⃗ × A⃗ is non commutative so the quaternion product 

also inherently becomes non-commutative. 

2.2. Complex conjugate, norm and inverse 

The complex conjugate of quaternion �@ = AB + A⃗ = AB + $A! + %A& + DAC� is: 

 @∗ = AB + NOO⃗ ∗ = AB − $A! − %A& − DAC (7) 

The norm of the quaternion A is denoted by P�A� or|P| and sometimes called  

the length of the quaternion and is given by equation (8): 

P�@� = RQ ∗ Q  P&�A� = �AB − A⃗��AB + A⃗� = 0 = ABAB − �−A⃗� ∙ A⃗ + AB�A⃗� + AB�−A⃗� + �A⃗ × A⃗�  using Eq. (6) 

 P&�@� =  AB& + �A⃗ ∙ A⃗� =  AB& + A!& + A&& + AC& =  AB& +  |A|& (8) 

For every non-quaternion, we can calculate the inverse. By definition of inverse: AT!A = AAT! = 1 

(6)
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By pre and post multiplication of complex conjugate: A∗AAT! = AAT!A∗ = A∗ 

Since A ∗ A = P&�@�, we get: AT! = A∗ P&�A�⁄  

The quaternion with the norm = 1 is called a Unit Quaternion. 

3. Quaternion rotation operator 

The quaternion operator A can be applied on a given vector V⃗ to get the image A⃗which may serve as desired rotated vector W = AV⃗. Expressing WOO⃗  and V⃗ into its 

real and imaginary components: WOO⃗ = �AB + A⃗��0 + V⃗� = AB�0� −  A⃗ ∙ V⃗ + 0�A⃗� + ABV⃗ +  A⃗ × V⃗ 

This computation shows that the image WOO⃗  is not necessarily in @B. As it is not 

guaranteed that the term �−A⃗ ∙ V⃗� is always zero. The product V⃗A will not work  

either as commuting the factors will not change the real part either. Thus we cannot 

expect our quaternion rotation operator to simply consist of a single quaternion. 

These observations led to the thinking that desired rotation operator may involve 

triplets or perhaps even a higher order product. Let @ and � be two quaternion and   I⃗ be the pure quaternion (representing the desired vector to be rotated). Then there 

are 6 possibilities of these factors [11]:  I⃗QR, I⃗�@, QRI⃗, RQI⃗, RI⃗Q, QI⃗R. Now we 

know that the set of quaternions except pure quaternions (a quaternion Q ϵ RZ 

whose real part is zero is called pure quaternion) are closed under multiplication. 

Thus the product of the first four combinations will produce the product of a quater- 

nion and a pure quaternion as demonstrated recently in this section. The last hope 

will be RI⃗Q and QI⃗R; both of them are similar [11]. 

Let’s solve QI⃗R. Let Q = qB + A⃗; I⃗ = 0 + I⃗ and R = rB + ]⃗. Then the real part 

of the product QI⃗R will be: @HO⃗ � = �AB + A⃗� �0 + I⃗��]B + ]⃗� @HO⃗ � = �AB�0� − A⃗ ∙ I⃗ + A⃗�0� + ABI⃗ + A⃗ₓI⃗��]B + ]⃗� @HO⃗ � = �−A⃗ ∙ I⃗ + ABI⃗ + A⃗ₓI⃗��]B + ]⃗� 

Let us suppose for our simplicity that: �B = − A⃗ ∙ I⃗  and �⃗ = ABI⃗ + A⃗ₓI⃗. 
 

So, QI⃗R =  ��B + �⃗��]B + ]⃗� 

Now QI⃗R = �B]B − �⃗ ∙ ]⃗ + �⃗]B + ]⃗�B + �⃗ₓ]⃗ 

But �B = − A⃗ ∙ I⃗  and �⃗ = ABI⃗ + A⃗ₓI⃗  QI⃗R = �− A⃗ ∙ I⃗�]B − �ABI⃗ + A⃗ₓI⃗� ∙ ]⃗ + �ABI⃗ + A⃗ₓI⃗�]B + ]⃗�− A⃗ ∙ I⃗� + �ABI⃗ + A⃗ₓI⃗�ₓ]⃗ 
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Here, the real part is = �−A⃗ ∙ I⃗�]B − �ABI⃗ + A⃗ₓI⃗� ∙ ]⃗ 

 = −]B�A⃗ ∙ I⃗� − AB�I⃗ ∙ ]⃗� − �A⃗ₓI⃗� ∙ ]⃗ 

 = −]B�A⃗ ∙ I⃗� − AB�I⃗ ∙ ]⃗� − �−I⃗ₓA⃗� ∙ ]⃗ 

 = −]B�A⃗ ∙ I⃗� − AB�I⃗ ∙ ]⃗� + �I⃗ₓA⃗� ∙ ]⃗ 

Here �I⃗ₓA⃗� ∙ ]⃗ is a vector triple product. And by vector algebra �IO⃗ ₓAO⃗ � ∙ ]⃗ = �I⃗ₓ]⃗� ∙ A⃗. So, the real part is = −]B�A⃗ ∙ I⃗� − AB�I⃗ ∙ ]⃗� + �I⃗ₓ]⃗� ∙ A⃗ 

Let ]B = AB; is = −AB�A⃗ ∙ I⃗� − AB�I⃗ ∙ ]⃗� + �I⃗ₓ]⃗� ∙ A⃗ 

 = −AB�A⃗ ∙ I⃗ − I⃗ ∙ ]⃗� + �I⃗ₓ]⃗� ∙ A⃗ 

 = −AB�A⃗ − ]⃗� ∙ I⃗ + �I⃗ₓ]⃗� ∙ A⃗ 

Clearly the real Part will be zero, when AO⃗ = −]⃗. And we have already supposed  

that ]B = AB. So this means that � = ]B + ]⃗ = AB + A⃗ = @* 

So, Q = R* and R = Q* 

So our quaternion rotation operator will be @I⃗@* or @*IO⃗ @. Both of these  

operators will produce the required pure quaternion i.e. WOO⃗ ! = @I⃗@* or WOO⃗ 1 = @*IO⃗ @. 

4. Trigonometric encoding and geometry of quaternion’s rotation  

Let the quaternion @ = AB + A⃗ be a unit quaternion. We know that: P&�@� = = AB& + |A|& = 1. We also know that, _`�&a + b$c&a = 1. 

Comparing the two facts: _`�&a = AB& and b$c&a = |A|&. Let �O⃗  be a unit  

vector. The unit quaternion can be encoded using trigonometric identities as follows: @ = _`�a + �O⃗ b$ca. 

If we substitute angle to be – a. Then 

 @* = _`�a – �O⃗ b$ca (9) 

Let @ = _`�a + �O⃗ b$ca then @* = _`�a – �O⃗ b$ca and V⃗ = 0 + % (the vector to  

be rotated) and let a = 45 = d/4 and �O⃗ = $. 
Then, @V⃗@∗ = �_`�a + �O⃗ b$ca��0 + %��_`�a – �O⃗ b$ca� = �_`� fZ + $b$c fZ��0 + %��_`� fZ − $b$c fZ�  

= g√&& + i √&& i �0 + j� g√&& − i √&& i  

= j0 − 0 + j √&& + 0 + √&& �iₓj� k g√&& − i √&& i  = j0 + j √&& + √&& kk g√&& − i √&& i = 0 − gj √&& + √&& ki . gi √&& i + √&& gj √&& + √&& ki + 0 + gj √&& + √&& ki ₓ gi √&& i 
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= j √�� +  √�� k + ��
	 
 �0 √�� √��√�� 0 0 �� 

= j √�� +  √�� k − j √�� + √�� k   = k  
The insight interpretation of the result is  as follows. Given a unit quaternion, � = ���� + ��⃗ �	�� and �⃗ = 0 + 
 and � = 45 = �/4 and ��⃗ = 	, the vector j  

is rotated 90° (twice the given angle) about the axis ��⃗ = 	 in a counterclockwise  

direction, and similarly  Q∗�⃗Q will rotate the vector in a clockwise direction. 

5. Generalized formula and matrix form of quaternion rotation 

���⃗ = ��⃗�∗ = (!" + !⃗)(0 + �⃗)(!" − !⃗) = (0 – !⃗ ∙ �⃗ + !"�⃗ + 0 + !⃗x�⃗)(!" – !⃗) = (– !⃗ ∙ �⃗ + !"�⃗ + !⃗x�⃗)(!" – !⃗) = – (!⃗ ∙ �⃗)!" – (!"�⃗ + !⃗x�⃗) ∙ (– !⃗) + (– !⃗ ∙ �⃗)(– !⃗) + !"(!"�⃗ + !⃗x�⃗) +     (!"�⃗ +  !⃗x�⃗)x(– !⃗) = – (!⃗ ∙ �⃗)!" + !"(�⃗ ∙ !⃗) + (!⃗'�⃗) ∙ (!⃗) + (!⃗ ∙ �⃗)(!⃗) + !"��⃗ + !"(!⃗'�⃗) – !"(�⃗'!⃗) – (!⃗'�⃗)'(!⃗) = (!⃗ ∙ �⃗)(!⃗) + !"��⃗ + !"(!⃗x�⃗)– !"(�⃗x!⃗)– (!⃗x�⃗)x(!⃗) = (!⃗ ∙ �⃗)(!⃗) + !"��⃗ – !"(�⃗x!⃗) – !"(�⃗x!⃗) – (!⃗x�⃗)x(!⃗) = (!⃗ ∙ �⃗)(!⃗) + !"��⃗ – 2!"(�⃗'!⃗) – (!⃗'�⃗)'(!⃗) (10) 

Here: – (!⃗'�⃗)'(!⃗) = – [�⃗(!⃗ ∙ !⃗) – !⃗(!⃗ ∙ �⃗)] = – [�⃗|!⃗|� – !⃗(!⃗ ∙ �⃗)] because 
 , × . × / = .(, ∙ /) − /(, ∙ .).  

Let 0�(�) = !"� + |!|� = 1, so |!⃗|� = 1 – !"�. This assumption clarifies the 

use of a unit quaternion in a rotation operator. 

So Equation (10) becomes, 

���⃗ = (!⃗ ∙ �⃗)(!⃗) + !"��⃗ – 2!"(�⃗x!⃗) – �⃗ + �⃗!"� + !⃗(!⃗ ∙ �⃗) = (!⃗ ∙ �⃗)(!⃗) + 2!"��⃗ – 2!"(�⃗'!⃗) – �⃗ + !⃗(!⃗ ∙ �⃗) = 2(!⃗ ∙ �⃗)(!⃗) + 2!"��⃗ – 2!"(�⃗'!⃗) – �⃗ ���⃗ = ��⃗�∗ = �⃗(2!"� – 1) + 2(!⃗ ∙ �⃗)(!⃗) – 2!"(�⃗'!⃗) (11) 
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Matrix form of quaternion for rotation can be formulated as follows: 

V⃗�2AB& – 1� = u�2AB& − 1� 0 �2AB& − 1�0 �2AB& − 1� 00 0 �2AB& − 1�v wV!V&VCx 

2�A⃗ ∙ V⃗��A⃗� = u2A!&  2A!A& 2A!AC2A!A& 2A&&  2A&AC2A!AC 2A&AC 2AC    v wV!V&VCx 

2AB& gV⃗ₓAOOOOOO⃗ i = w 0  −2ABAC 2ABA&  2ABAC   0 −2ABA!−2ABA& 2ABA!  0 x wV!V&VCx 

The sum of these components may be written as: 

wW!W&WCx = u2AB& − 1 + 2A!& 2A!A& − 2ABAC   2AB& − 1              2A!A& + 2ABAC   2AB& − 1 + 2A&& 2A&AC − 2ABA!   2A!AC−2ABA&     2A&AC + 2ABA!   2AB& − 1 + 2AC&v wV!V&VCx 

So, WOO⃗ = QVO⃗ Q∗ = QVO⃗  will give the counterclockwise rotation and WOO⃗ = Q*VOO⃗ Q == QyV⃗  will give the clockwise rotation. 

6. Simulation and results 

To experiment with quaternions from the computer graphics perspective, we 

modify existing Quaternion Code for Intuition Building  and simulation on C++ 

and OpenGL [12]. The existing quaternion implementation treat quaternion as  

a composition of 3D vector as shown in Figure 1. To Use Quaternion in a program, 

the Simulation Algorithm of Table 1 can be used. The Algorithm has been tested 

for a point that resides on a circle as: (cos(t), sin(t),0) and the axis of rotation is set 

to (0,0,1), (0,1,0) and (1,0,0) respectively. It has been observed that for rotation 

about (0,0,1) i.e. z-axis the point rotates from 0° to 360° but for rotation about the 

y-axis (0,1,0) it doesn’t complete the cycle. Rotation about the x-axis (1,0,0) has 

been observed as a particle is moving on straight line and depth effect from front  

to back is not observable. Quaternion’s simulation results about z and y axis are 

shown in Figures 2 and 3 respectively. We also test Quaternion matrix in Python 

on Jupyter notebook to rotate Blue vector (image matrix) B around green vector 

(green matrix) G where both B and G are of size (600, 400). It is important to note 

that Python and OpenCV image library treated RGB as BGR space. Result in  

Figure 4 shows that Blue Image is successfully turned into Red through quaternion 

operation. The simulation Code is presented in Table 4 for reader convenience. 



An insight into the evolution of rotation operator to quaternion’s. Computer graphics perspective 85

 

Fig. 1. C++ implementation of quaternion as composite object [12] 

   
 Fig. 2. Quaternion rotation about Z-axis Fig. 3. Rotation about Y-axis 

Table 3. Algorithm to simulate quaternion 

Procedure QuaternionSimultion (function x(u,v: real): real; 

 function y(u,v:  real); function z(u,v: real): real; 

 angle: double; var ,axis: Point3D): q: Quarternion, 

 mat: array[1...4,1...4] of real; var 

 i: integer; numPoints: integer;              incr: integer; Q: Quaternion, p: Point3D 

begin 

for i:=1 to numPoints do 

begin 

Q.w =  cos(angle/2); 

Q.u.x = sin(angle/2)*axis.x; 

Q.u.y = sin(angle/2)*axis.y; 

Q.u.z = sin(angle/2)*axis.z; 

q :=    Q Q*  

mat: = ExportToMatrix(q);  mat:= GL_MODELVIEW * mat; 

drawRotatedPoint(v.x,v.y,v.z);  

end 

end 

w: scalar of type double 

u: 3D vector with components x,y,z 
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Table 4. Python and OpenCV Simulation 

 

 
 

 

 
 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4. Blue Matrix Rotated Around Green through Quaternion’s 

7. Conclusions 

In the paper, quaternions as an alternative to a rotation operator have been  

studied for simulation from computer graphics perspective. Thorough study of  

quaternion algebra has been turned into pseudocode and Python code to be used  

(1) (2) 

(3) 

(4) 

(5) (6) 

(7) (8) 
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for variety of applications. Special cases has been demonstrated for rotation of  

a point on circle or sphere around x, y and z-axis. C++, OpenGL and OpenCV has 

been used for presenting simulation results. Future work will emphasize on higher 

level modeling and animation e.g surface of revolution, bill boarding and Frenets. 
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