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Abstract. In this research study, a combination of lower and upper bound finite element 

limit analysis (FELA) and artificial neural network (ANN) has been adopted in order to 

forecast critical seismic coefficients (kc) of homogeneous earth dams (HED) subjected to 

pseudo-static seismic loading. To achieve this, the results of kc obtained by OptumG2 

software were used in the development of the ANN and MR models. The ANN models 

have shown higher prediction performance than the MR models based on the performance 

indices. The most appropriate architecture was found 8-14-1, as this gave the best kc pre-

dict with the minimum statistical measures of error and the high determination coefficient 

(> 99%). Consequently, the ANN model can be used to easily and accurately predict kc 

value of the HED as the best substitute for the conventional methods. 
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1. Introduction 

The critical seismic coefficient of a slope is an important parameter in deciding 

the seismic safety of an earth dam. In practice, the stability of small earth dams  

under seismic loading is usually evaluated by applying the conventional pseudo-static 

method (PSM). The PSM is convenient when critical seismic coefficients (kc)  

can be estimated. In addition, with these coefficients, permanent deformations of 

earth dam slopes can be determined using the Newmark simplified procedure [1]. 

In fact, the kc is calculated as the quotient of the horizontal seismic acceleration, 

ah , to the acceleration of gravity (kc = ah/g), the critical state corresponding to  

a factor of safety (FS) equals one [2]. However, this procedure requires much effort 

and time during iteration [3]. 



Z. Abdelatif, F. Ali, D. Messaoud 

 

6

In slope stability analysis, the evaluation of FS and kc is often performed using 

either conventional approaches (limit equilibrium and limit analysis) or numeric ones 

(the strength reduction technique). Therefore, different techniques have been pro-

posed to determine the critical seismic coefficient kc (upper bound formulation [4], 

variational formulation of limiting equilibrium and a strength reduction technique [5], 

limit equilibrium method and stress acceptability criteria [6],…etc.). Particularly, 

there is no exacting formulation for selecting the pseudo-static coefficient for design- 

ing earth dams with special conditions as anisotropy seepage. 

Recently, the finite element limit analysis (FELA), an alternative approach that 

offers higher-quality results than the conventional methods [7]. So, FELA is a power- 

ful combination of a mathematical and numerical tool with great finite element  

discretization capabilities for manipulating complex soil, load, and boundary con-

ditions and bound plastic theorems to frame the exact limit load with upper and 

lower limit solutions [8]. 

As an alternative practice to the analytical and numerical methods, artificial 

neural networks (ANNs) have been developed as powerful mathematical and nu-

merical modeling manners that can interconnect complex nonlinear relationships. 

The ANNs learning capability have used in multivariate complex modeling and 

have enlarged uses in various fields of geotechnical engineering [9]. 

The aim of this study is to develop an ANN model in order to achieve quick 

forecasting of the critical seismic coefficient of homogeneous earth dams (kc)  

under full reservoir long-term stability condition and anisotropy seepage (Kh ≠ Kv). 

The kc assessed by the developed ANN models corresponds well with those obtained 

by the conventional trial and error approach and, thus, can be applied efficiently  

for assessing the stability and performance of HED during earthquake shaking. 

2. Numerical model of analysis 

In the present study, the numerical finite element limit analysis software,  

OptumG2 [10], was used to accurately determine the critical seismic coefficients of 

homogeneous earth dams (HED). OptumG2 software has been efficiently applied 

to solve various problems in geotechnical engineering [11]. 

In the following modeling steps, an HED on an impervious foundation with the 

geometric parameters shown in Figure 1a is considered. The numerical model of  

a HED in OptumG2 is shown in Figure 1b. An automatically adaptive mesh  

refinement with 2,000 elements and 3 adaptivity steps was used in both the upper 

and lower bound analyses. The mesh was composed of six noded, second-order, 

plane-strain triangular elements. The boundary condition of this problem is defined 

as the following: the left boundaries of the problem are allowed to move only in  

a vertical direction, while the bottom boundary of the model is fixed in both direc-

tions. Whereas, an elastoplastic constitutive model following the Mohr-Coulomb 

failure criterion was assigned to the soil. 
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(a) 

Fig. 1. (a) Geometric parameters of HED with horizontal drain on impervious foundation 

(m/n - Upstream/downstream slope of dam; Fb 

hw - Water depth in upstream of the dam); (b) adaptive mesh using OptumG2 software

Fig. 2. Sample of results of pseudostatic analysis using OptumG2 software: a) pore pre

3. Research methodology

The methodology proposed in this study to develop the ANN models contains 

the following steps: 

1. Construction tow representative databases D1 and D2 using the OptumG2 

(2017) software. The input variables of the first database contains the different 

parameters influencing the kc of the HED values: Base width of the dam (B), 

Height of the dam (H), length of horizontal

(γ), effective cohesion (c'), effective friction angle (φ'), horizontal permeability 

(Kh), and vertical permeability (K

present the input data in a dimensionless manner (γ/H

2. Developing the direct relationships between the selected sets of input variables 

and the obtained output variables using either Multiple Regression (MR and MR2)

and feed forward back

3. Exploitation of the developed ANN models: sensitivity analysis (BPNN1), 

mathematical equation (BPNN2).

4. Accuracy of the developed ANN models is compared with the existing methods 

for estimation of kc for some new cases with input values that do not

in the database constructed in step (1) above.

a) 

ritical seismic coefficients of homogeneous earth dams prediction by a FELA-ANN approach

(b) 

Fig. 1. (a) Geometric parameters of HED with horizontal drain on impervious foundation 

Upstream/downstream slope of dam; Fb - Free broad; b - top width of the dam;

Water depth in upstream of the dam); (b) adaptive mesh using OptumG2 software

 

Fig. 2. Sample of results of pseudostatic analysis using OptumG2 software: a) pore pre

sure [kPa], b) head water [m] 

Research methodology 

The methodology proposed in this study to develop the ANN models contains 

w representative databases D1 and D2 using the OptumG2 

(2017) software. The input variables of the first database contains the different 

parameters influencing the kc of the HED values: Base width of the dam (B), 

Height of the dam (H), length of horizontal toe drain (L), unit weight of dam soil

(γ), effective cohesion (c'), effective friction angle (φ'), horizontal permeability 

), and vertical permeability (Kv), while the second database (compacted) 

present the input data in a dimensionless manner (γ/Hc , Kv/Kh , tanφ, L/B).

Developing the direct relationships between the selected sets of input variables 

and the obtained output variables using either Multiple Regression (MR and MR2)

and feed forward back-propagation neural network method (BPNN1, BPNN2)

Exploitation of the developed ANN models: sensitivity analysis (BPNN1), 

mathematical equation (BPNN2). 

Accuracy of the developed ANN models is compared with the existing methods 

for estimation of kc for some new cases with input values that do not

in the database constructed in step (1) above. 

b) 
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Fig. 1. (a) Geometric parameters of HED with horizontal drain on impervious foundation 

top width of the dam; 

Water depth in upstream of the dam); (b) adaptive mesh using OptumG2 software 

 

Fig. 2. Sample of results of pseudostatic analysis using OptumG2 software: a) pore pres-

The methodology proposed in this study to develop the ANN models contains 

w representative databases D1 and D2 using the OptumG2 

(2017) software. The input variables of the first database contains the different 

parameters influencing the kc of the HED values: Base width of the dam (B), 

toe drain (L), unit weight of dam soil 

(γ), effective cohesion (c'), effective friction angle (φ'), horizontal permeability 

), while the second database (compacted) 

, tanφ, L/B). 

Developing the direct relationships between the selected sets of input variables 

and the obtained output variables using either Multiple Regression (MR and MR2) 

propagation neural network method (BPNN1, BPNN2).  

Exploitation of the developed ANN models: sensitivity analysis (BPNN1), 

Accuracy of the developed ANN models is compared with the existing methods 

for estimation of kc for some new cases with input values that do not exist  
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4. Models development 

The detail of development of MR and ANN models for prediction of kc of HED 

has been discussed hereunder. 

4.1. Artificial neural network models 

ANN can be defined as structures consisting of mathematical processing element 

famed as neurons, which performs parallel calculations for data processing [12]. 

The feed forward back-propagation (FB) is often the most common model of neural 

networks used in geotechnical applications [13, 14]. In this model, the neuron of 

the network receives input signals, trains them and sends an output signal. The 

connection between neurons is represented by a number called weights (w). 

4.1.1. Database and normalization 

The kc evaluation of HED with horizontal drain by FELA in the case of the full 

reservoir under pseudostatic loading needs to identify a number of parameters. 

These parameters can be classified into three groups: first, geometric parameters 

(B, H, L), secondly, geotechnical parameters (γ, c', φ') and third one seepage  

parameters (Kh , Kv). 

A dataset of 306 different cases of above eight independent variables as inputs 

and one dependent variable kc as an output was built through OptumG2 FELA 

software and was then used to produce artificial neural network (ANN). Hence, kc 

is the mean value of the upper bound and lower bound critical seismic coefficient. 

Table 1 presents the summary statistics for each variable of the critical seismic 

coefficient dataset. 

Table 1. Summary statistics of the critical seismic coefficient database 

Parameters Max Min. Mean  St.dv. 

B [m] 142 50 86.23 27.77 

L [m] 40 0 17.57 11.82 

H [m] 20 10 14,98 4.14 

γ [kN/m3] 21 15 17.23 1.99 

c [kPa] 50 5 22.66 16.21 

φ [°] 50 10 29.90 10.55 

Kh [m/day] 0.1 0.001 0.06 0.05 

Kv [m/day] 0.1 E-5 0.04 0.04 

γ/Hc 0.38 0.02 0.12 0.12 

Kv/Kh 1 0.01 0.40 0.40 

tan φ 1.19 0.18 0.60 0.25 

L/B 0.41 0 0.21 0.13 

kc 0.701 0 0.25 0.16 
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For FBNN1, before applying the training, the input and output values should be 

normalized, since most training algorithms are sensitive to the scale of the data.  

In the present study, the dataset has been scaled to make them bounded into the 

range [–1,1] using the min-max normalization formula as follows: 

 
 

 
,
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2
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i i min
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i max i min

X X
X

X X


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  (i = 1,2,………….,N) (1) 

where Xnormalized and Xi represent normalised and actual value respectively. Xi,min and 

Xi,max represent the minimum and maximum values of the attribute Xi. 

In this study, ANN’s modeling has been developed by the use of Matlab soft-

ware. So, for a better form of the elements that frame the ANN architecture with its 

developments, our selection of modeling sets were made as follows:  

 A random dataset has been distributed into three sets, which are: training set, 

testing set, and validation set. So, in order to study the training process, a 70% 

(214/306)  of data was used, while the remaining (30%) was used equally for 

the testing and validation steps (46/311; 46/311). 

 The linear purelin transfer function for the output neuron was selected since it is 

fitting for continuous-valued targets [15]. 

 The trial-and-error technique based on the statistical measures was used to deter- 

mine the optimum neurons in the hidden layer to optimize the ANN architecture.  

The principal settings of ANN used in this study are mentioned in Table 2. 

Table 2. Settings of ANN used in this study 

Setting ANN1 ANN2 

Topology of the network Feed forward 

Learning paradigm Back propagation 

Training algorithm Levenberg-Marquardt 

Number of hidden layers 1 

Normalization [–1, 1] / 

Activation function hyperbolic tangent sigmoid (tansig) Log sigmoid (logsig) 

Performance evaluation R2, RMSE, MAE 

Network typology 8–j–1/j = 4,…,18. 3–j–1/j = 2,…,9. 

4.1.2. Performance evaluation 

In order to quantify the agreement between computed and predicted values of 

the critical seismic coefficient of HED, we used three statistical measures: root 

mean-square error (RMSE), mean absolute error (MAE), coefficient of determina-

tion (R
2
). These statistical performance evaluation criteria are identified as follows:  
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where: Pi - predicted value; Ci - computed value; N - number of observations;  

Cmax - maximum computed value; Cmin - minimum computed value; and C  - averaged 

computed value. 

The methodology practiced to estimate the performance of ANN architecture 

includes obtaining the minimum statistical measures of error between computed 

and predicted values. Therefore, the best ANN model was selected on the basis of 

the lowest (RMSE, MAE) and highest R
2
 values. 

4.2. Multiple regression (MR) models 

The multiple regression (MR) is a statistical technique that examines cause-

effect relations between dependent and independent variables [16]. The data used 

while developing the ANN models were used in the development of the MR models. 

The two MR models revealed the following correlations: 

kc = −0.293 + 0.002� + 0.004
 − 0.014� + 0.008� + 0.008� + 0.007� − 0.306�� + 0.169��  (5) 

kc = 0.083 − 0.931 ��� − 0.026 ���� + 0.365 ���� + 0.329 
� (6) 

5. Results and discussion 

In this study, the overall performance of the developed models was assessed  

using the statistical analyses of the predicted and calculated kc values. The results 

of the statistical performance of the optimal ANN models with best geometries are 

shown in Table 3. As it can be seen, for ANN1, the R
2
 values are very close to one 

while MSE and MAE values are close to zero, indicating excellent agreement  

between the assessment results and forecasted results of kc. Also, it can be noticed 

that the predicted kc values from ANN2 and MR1 models are in good agreement 

with kc observed, as their R
2
 > 0.8 [17]. 



Critical seismic coefficients of 

 

Table 3. Statistics and performance parameters of the optimal models

Optimal model

ANN1 

(8-14-1)

MR1 

ANN2 

(4-4-1) 

MR2 

 

Figure 3 shows that the values forecast by the developed ANN models fit 

perfectly with the computed values. High performances of the training step, testing 

step, and validation step indicate that the learning process of the optimal predictive 

model is successful, hence, the R

both models. Obviously, it can be noted that the ANN1 model developed exhibits 

higher prediction performance than the ANN2 model based on the performance 

criteria, similarly for MR model

a higher prediction performance than MR models, which demonstrates the effe

tiveness of the ANN approach.
 

a) 

Fig. 3. R values of training, validation, test and all data for optimal models: a) FBNN1,

The plots of network performance (MSE) at different epochs for both models 

(FBNN1 and FBNN2) are shown in Figure 4. According to these plots, the deve

ritical seismic coefficients of homogeneous earth dams prediction by a FELA-ANN approach

Table 3. Statistics and performance parameters of the optimal models 

Optimal model Set R2 RMSE MAE 

 

1) 

Training 0.999 0.0412 0.0025 

Validation 0.987 0.0591 0.0048 

Test 0.993 0.0707 0.0084 

All data 0.817 0.0697 0.0548 

 

 

Training 0.836 0.0648 0.0364 

Validation 0.873 0.0656 0.0283 

Test 0.810 0.0728 0.0554 

All data 0.650 0.0964 0.0736 

Figure 3 shows that the values forecast by the developed ANN models fit 

perfectly with the computed values. High performances of the training step, testing 

step, and validation step indicate that the learning process of the optimal predictive 

cessful, hence, the R-value is over 0.899 for the whole response for 

both models. Obviously, it can be noted that the ANN1 model developed exhibits 

higher prediction performance than the ANN2 model based on the performance 

criteria, similarly for MR models. Also, the ANN models developed demonstrate 

a higher prediction performance than MR models, which demonstrates the effe

tiveness of the ANN approach. 

b) 

    

Fig. 3. R values of training, validation, test and all data for optimal models: a) FBNN1,

The plots of network performance (MSE) at different epochs for both models 

(FBNN1 and FBNN2) are shown in Figure 4. According to these plots, the deve
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Fig. 3. R values of training, validation, test and all data for optimal models: a) FBNN1, b) FBNN2 

The plots of network performance (MSE) at different epochs for both models 

(FBNN1 and FBNN2) are shown in Figure 4. According to these plots, the devel-
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oped models are processed because the MSE of the network starting at a high value 

and decreasing to a lower value. This figure also shows that the test set error and 

the validation set errors have similar characteristics and that there does not seem to 

have been a significant overfitting. 

On the other hand, to look for a statistically significant difference between cal-

culated and predicted kc values, a paired t-test was performed by using the Graph-

Pad Software. The p value was found as (0.345, 0.427) and (0.651, 0.473) for the 

ANN and MR models, respectively, indicating that no significant difference in  

kc values was observed between computed and forecasted values for all models  

(p > 0.05). 
 

a) b) 

      

Fig. 4. Best validation performance: a) FBNN1, b) FBNN2 

5.1. Sensitivity analysis 

The relative importance of the various input issues can be assessed by examining 

the connection weights. Garson [18] proposed an equation that included partition-

ing the hidden-output connection weights of each hidden neuron into components 

associated with each input neuron: 
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 (7) 

where RIj is the relative importance of the j-th input variable on the output variable, 

w is connection weight, Ni and Nh are the numbers of input and hidden neurons  

respectively, the subscripts "k", "m" and "n" refer to input, hidden and output  

neurons respectively, and the superscripts "i", "h" and "o" refer to input, hidden and 

output layers respectively. 
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Table 4 shows the weights of the input-hidden layer connections, the hidden-

output layer connections, and biases for model (4-4-1). The weights and biases can 

be used for sensitivity analysis and framing an ANN model in equation form. 

Table 4. Connection weights and biases of the optimal ANN2 model 

Neuron 

w1 w2 Biases 

Input neurons Output   

γ/Hc Kv/Kh tanφ L/B kc bhk b0 

1 2.3123 –1.6702 0.43082 0.39334 –0.47731 –2.4001 –0.32977 

2 –1.8787 0.25268 –1.3399 –0.60174 –0.50553 1.716  

3 1.0478 1.8986 –2.7067 –0.36643 –2.7263 0.28588  

4 4.2262 –0.61591 0.67505 4.0793 3.1077 –0.51371  

 

The results of relative importance of inputs are shown in Table 5. The results 

indicate that the φ, H, Kv , Kh , and c are the most important parameters affecting kc. 

The results also show that the B, L and γ have less effect on kc. 

Table 5. Relative importance of different input variables 

Input variable B L H γ c φ Kh Kv 

Relative Importance 3.188 4.395 17.435 6.110 9.360 29.398 14.603 15.510 

5.2. Explicit formulation of ANN2 model 

The model equation for the output can be formulated based on the trained 

weights of the ANN model [19]. In this study, the basic mathematical equation  

relating the independent variables and the critical seismic coefficient value based 

on trained neural network can be written as: 

 kc = � !" + ∑ $%& ∗ �(!�& + ∑ %)&*)+),- ./�&,- 0 (8) 

where wik is the connection weight between i-th input variable and k-th neuron of 

hidden layer; Xi is the input variable and f is the sigmoid transfer function. h is the 

number of neurons in the hidden layer. 

So, such a model equation for critical seismic coefficient (kc) was established 

using the values of the weights and biases shown in Table 4 as per the following 

expressions: 

⎩⎪
⎪⎪
⎨
⎪⎪⎪
⎧51 = 2.3123 6 γH89 + –1.6702 6K;K<9 + 0.43082(tan φ. + 0.39334 6LB9 – 2.4001

52 = –1.8787 6 γH89 + 0.25268 6K;K<9 – 1.3399(tan φ. – 0.60174 6LB9 + 1.716    
53 = 1.0478 6 γH89 + 1.8986 6K;K<9 – 2.7067(tan φ.– 0.36643 6LB9 + 0.28588     
54 = 4.2262 6 γH89 – 0.61591 6K;K<9 + 0.67505(tan φ. + 4.0793 6LB9 – 0.51371 

C (9)
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⎩⎪
⎪⎨
⎪⎪
⎧�- = –0.47731 6 11 + e–E-9

�F = –0.50553 6 11 + e–EF9
�G = –2.7263 6 11 + e–EG9  
�H = –2.7263 6 11 + e–EH9  

C (10)

kc = 11 + I–(–".GFJKKLM-LMFLMGLMH. (11)

5.3. Comparison with other methods 

For this purpose, we have arbitrarily chosen three new cases with input values 

that are not similar to values adopted in the database. Table 6 shows the selected 

input variables for each of the three cases used. Table 7 shows the results obtained 

from FELA (OptumG2), FEM (GEO5) and the developed models (MR1, ANN1) 

for new cases. 

Table 6. Selected input data for new cases 

Cases 
Input variable 

B L H c  φ γ  Kh Kv 

1 98 30 20 5 25 17 0,1 0,1 

2 102 0 20 25 40 19 0,1 0,02 

3 142 40 20 10 20 15 0,001 0,0002 

Table 7. Comparison of results obtained from different methods 

Cases 
kc 

(OptumG2)  

kc 

(GEO5FEM) 

Relative 

error 

[%] 

kc 

(ANN1) 

Relative 

error 

[%] 

kc 

(MR1) 

Relative 

error 

(%) 

1 0.0925 0.00 89.19 0.1026 –10.92 0.0883 4.45 

2 0.355 0.35 0.17 0.3057 13.89 0.25678 27.66 

3 0.146 0.1 31.51 0.1731 –18.56 0.21573 –47.76 

6. Conclusions 

In this study, the critical seismic coefficient of homogenous earth dams has been 

predicted by Artificial Neural Network models. The prediction of these critical 



Critical seismic coefficients of homogeneous earth dams prediction by a FELA-ANN approach 

 

15

seismic coefficients requires the use of OptumG2 FELA software with identified 

ranges of variables to build a representative database. For a specified set of inde-

pendent variables, the (8-14-1) and (4-4-1) ANN models were found to be capable 

of estimating the kc accurately. The error estimated is very low which indicates 

that the approach is applicable accurately and rapidity as compared to other tech-

niques (conventional and numeric methods). Moreover, the results of sensitivity 

analysis showed that angle of friction (φ) is the most important parameter affecting 

kc with relative importance of 29.40%. 
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