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Abstract. In this work, a steady two dimensional MHD flow of a viscous incompressible 

fluid through a rectangular duct under the action of an inclined magnetic field with a porous 

boundary has been investigated. The coupled partial differential equations are transformed 

into a system of algebraic equations using the finite difference method and are then solved 

simultaneously using the Gauss Seidal iteration method by programming in Matlab soft-

ware. Numerical solutions for velocity, induced magnetic field and current density lines are 

obtained and analyzed for different values of dimensionless parameters namely suction/ 

/injection parameter (�), Hartmann number (�) and inclination angle (�) and are presented 

graphically.  
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1. Introduction  

The theoretical or numerical study of magnetohydrodynamic (MHD) flow through 

ducts has gained great interest to many researchers because of its wide applications 

in science and engineering such as in the cooling system of nuclear reactors, MHD 

generators and pumps, blood flow measurement, MHD flow meters and accelerators, 

etc. Describing equations of MHD flow are the combined and modified equations 

of the Navier-Stokes equations of fluid mechanics and the Maxwell’s equations of 

electrodynamics. Due to the coupling of equations of these two branches of science, 

exact solutions are possible only for some simple situations and geometry. So, vari-

ous numerical techniques are effective for the approximate solutions of MHD flow 

problems for complex situations and geometry. 

Many researchers studied MHD flows through a non-porous rectangular duct  

in two-dimensional (i.e., the velocity and induced magnetic field depend on two 

coordinates) cases considering different aspects of the flow problems. Among them, 

in 1953, Shercliff [1] first obtained an exact solution for two-dimensional MHD flows 
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in rectangular ducts with insulating walls in the presence of a transverse magnetic 

field. He pointed out the existence of a second type of boundary layer known as side 

or parallel layers near walls parallel to the magnetic field besides the Hartmann 

layers. Chang and Lundgren [2] and Fendoglu et al. [3] analytically studied MHD 

flow in a rectangular duct. Celik [4], Kim [5] and Chutia and Deka [6] solved MHD 

flow equations numerically in rectangular/square ducts for different aspects of the 

problems. Tayebi and  Chamkha [7] numerically studied the steady natural convec-

tive heat transfer and flow characteristics of an Al2O3-Cu/water hybrid nanofluid 

filled square enclosure in the presence of magnetic field equipped with a wavy cir-

cular conductive cylinder. Ghalambaz et al. [8] investigated the effects of a hybrid 

nanofluid in a square cavity that was divided into two equal parts by a vertical flexi- 

ble partition in the presence of a magnetic field. Chamkha et al. [9] numerically  

investigated the entropy generation and natural convection inside a C-shaped cavity 

filled with CuO-water nanofluid and subjected it to a uniform magnetic field by  

finite volume method with the simple algorithm. Alsabery et al. [10] numerically 

studied the MHD mixed convection of nanofluid in a lid-driven square cavity sub-

jected to heating by a triangular thick wall. Raza et al. [11] examined the combined 

effects of thermal radiation and magnetic field of molybdenum disulfide nanofluid 

in a channel with changing walls with different shapes. Ghalambaz et al. [12] in- 

vestigated the melting flow and heat transfer of electrically conductive phase change 

materials subjecting them to a non-uniform magnetic field addressed in a square 

enclosure. Umavathi and Chamkha [13] numerically investigated the steady natural 

convection flow for a hydrodynamics case in a vertical rectangular duct employing 

the finite difference method (FDM).  

In all the above studies, the effect of the porous boundary were not considered. 

It may be well-known that the study of MHD flow through a duct with a porous 

boundary is significant due to its varied applications in many agricultural and  

engineering problems such as in designing of cooling systems with liquid metals, 

nuclear reactors using liquid metal coolant, geothermal energy extraction, under-

ground energy transport, biological and blood flow problems. Veera Krishna and 

Chamkha [14] discussed the diffusion-thermo, radiation-absorption and Hall and 

ion slip effects on MHD free convective rotating flow of nanofluids (Ag and TiO2) 

past a semi-infinite permeable moving plate with constant heat source making use 

of the perturbation technique. A few works studied by Sai and Nageswara Rao 

[15], Ramana Murthy et al. [16] and Ramana Murthy and Bahali [17] have been 

devoted to MHD flow in a rectangular or circular duct with porous walls. Chamkha 

et al. [18] explored heat transfer and magneto-hydrodynamic flow of hybrid nano- 

fluid in a rotating system among two surfaces assuming the upper and lower plates 

of the system are penetrable and stretchable respectively, considering thermal  

radiation and Joule heating impacts.  

Perhaps no work has been devoted to MHD flow in a rectangular duct with  

a porous boundary in the presence of an inclined magnetic field. In this paper, an 

attempt has been made to numerically study the steady two-dimensional MHD 

flow of a viscous incompressible electrically conducting fluid through a rectangular 
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duct under the action of an inclined magnetic field with porous walls. The problem 

is described by coupled partial differential equations for velocity and induced mag-

netic field. Numerical solutions have been obtained for the velocity and the in-

duced magnetic field by developing finite difference codes in Matlab programming 

that are useful for obtaining current density lines. The solutions for velocity,  

induced magnetic field and current density lines are analyzed for different values of 

the suction/injection parameter (�), Hartmann number (�) and inclination angle (�) are presented graphically. 

2. Governing equations 

 The basic governing equations of MHD flow considered in this problem are  

the modified Navier-Stokes equation motion (Muller & Buhler [19]), the magnetic 

induction equation, Ampere’s law and solenoidal properties of velocity and mag-

netic field: 

 � ��	

⃗�� + ��
⃗ ∙ ∇��
⃗ � = −∇� + ��∇��
⃗ + �⃗ × �
⃗  (1) 

 
��
⃗�� = ∇ × ��
⃗ × �
⃗ � + �∇��
⃗  (2) 

 ∇ × �
⃗ = �� �⃗ (3) 

 ∇ ∙ �
⃗ = 0 (4) 

 ∇ ∙ �
⃗ = 0 (5) 

where �, �, �, ��, !, �
⃗ , �
⃗  and �⃗ are fluid density, pressure, kinematic viscosity, 

magnetic permeability, electrical conductivity, velocity vector, magnetic field vector 

and current density vector respectively. 

3. Mathematical formulation 

We consider the steady two-dimensional laminar flow of a viscous incom-

pressible electrically conducting fluid in a porous rectangular duct under the action 

of an external uniform applied magnetic field of strength �", which makes an angle � with the positive direction of the #$-axis (i.e., with the positive direction of the 

non-porous walls) and induces a magnetic field of strength �%&('$, #$) in the flow 

direction. The flow is driven by a constant pressure gradient 
�)�%&. It is assumed that 

the walls of the duct are electrically non-conducting. The non-porous walls of the 

duct are situated at '$ = ±+, and porous walls are situated at #$ = ±, as shown  

in Figure 1. The axis of the duct is chosen as the -$-axis. The fluid particles are 

sucked and injected at the pair of walls parallel to '$-axis i.e., the fluid particles are 
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sucked with a constant velocity �" at #$ = −, and injected with same velocity at #$ = ,. All physical quantities except the pressure gradient are assumed to be  

independent of variable -$. Under these assumptions the velocity and magnetic 

field take the forms: 

�
⃗ = .0, �", �%&('$, #$)/  and �
⃗ = .�"012�, �"340�, �%&('$, #$)/ 

 

Fig. 1. A cross-section of the rectangular duct normal to the flow direction (-$-axis) 

In the steady case and using solenoidal properties (4) and (5), Eqs. (1) and (2) 

can be written as  

 ���
⃗ ∙ ∇��
⃗ = −∇� + ��∇��
⃗ + �⃗ × �
⃗  (6) 

 ��
⃗ ∙ ∇��
⃗ = ��
⃗ ∙ ∇��
⃗ + �∇��
⃗  (7) 

Substituting the expressions for the velocity and magnetic field as stated above 

in Eqs. (6) and (7), we obtain 

  ��" �	6&�7& = − �)�%& + �89:;<=>
��6&�?&  + �8@A9<=>

��6&�7& + �� B�C	6&�?&C + �C	6&�7&C D (8) 

  �" ��6&�7& = �89:;<=>
�	6&�?& + �8@A9<=>

�	6&�7& + � B�C�6&�?&C + �C�6&�7&C D (9) 

The Eqs. (8) and (9) are to be solved subject to the following boundary condi-

tions: 

 E�%& = 0, �%& = 0 at '$ = −+�%& = 0,  �%& = 0 at '$ = +�%& = 0, �%& = 0 at #$ = −,�%& = 0,  �%& = 0 at #$ = , ⎭⎬
⎫

 (10)  

In this problem, we define the following dimensionless quantities:  
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  ' = ?&K  , # = 7&LK, � = 	6&	8  , � = �6&�8  (11) 

where: �" = − KCMN �)�%&  and  �" = −+��� O PMNQR �⁄ �)�%&  . 

Using dimensionless quantities (11) in Eqs. (8) and (9), we obtain 

  � �	�7 = 1 + �012� ���? + RL �340� ���7 + �C	�?C + RLC �C	�7C (12)  

  �UVW ���7 = �012� �	�? + RL �340� �	�7 + �C��?C + RLC �C��7C (13)  

where � = 	8KN  is the suction/injection parameter, UVW = !��� is the magnetic 

Prandtl number, � = �"+ O PMNQR �X
 is the Hartmann number and Y = ZK is the aspect 

ratio. 

Then the boundary conditions (10) in dimensionless forms can be rewritten as 

follows: 

 E� = 0, � = 0 at ' = −1� = 0, � = 0  at  ' = 1� = 0, � = 0 at # = −1� = 0, � = 0 at  # = Y[ (14) 

4. Numerical solution 

The dimensionless coupled linear partial differential equations (12) and (13) 

with the prescribed boundary conditions (14) are simplified employing the finite 

difference scheme to obtain a system of algebraic equations. Central difference  

approximation is used to discretize the coupled PDEs, since it is more accurate  

than the forward and backward differences. So, both the first and second derivative 

terms appearing in the coupled equations are descretized employing the central  

difference scheme of second order accuracy. In the finite difference techniques,  

we have to divide the computational domain into a uniform grid system. We divide 

the rectangular region bounded by −1 ≤ ' ≤ 1 and −1 ≤ # ≤ Y into a grid con-

sisting of (] + 1) by (2 + 1) rectangle with sides ∆' = ℎ and ∆# = `. The grid 

points are identified by two subscripts  1: 1 = 1, 2, 3, … , (] + 1)  and e: e = 1, 2, 3,  … , (2 + 1). Where index 1 refers to ' and e refers to #. Numerical meshes −1 = = 'R < '� < 'g … < 'WhR = 1 and −1 = #R < #� < #g … < #;hR = Y are con-

sidered along ' and #-axes. Central difference approximations for both first and 

second derivatives of second order accuracy of the equations (12) and (13) are  

as follows: 
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 � O	i,jklm	i,jnl�o Q = 1 + �012� O�ikl,jm�inl,j�p Q + RL �340� O�i,jklm�i,jnl�o Q 
                                           + 	ikl,jm�	i,jh	inl,jpC + RLC O	i,jklm�	i,jh	i,jnloC Q (15)  

 �UVW O�i,jklm�i,jnl�o Q = �012� O	ikl,jm	inl,j�p Q + RL �340� O	i,jklm	i,jnl�o Q 
                                                   + �ikl,jm��i,jh�inl,jpC +  RLC O�i,jklm��i,jh�i,jnloC Q (16)  

The corresponding discretized boundary conditions are as follows: 

  E�R,q = 0,          �R,q = 0            at 1 = 1�WhR,q = 0, �WhR,q = 0 at 1 = ] + 1�:,R = 0,          �:,R = 0            at e = 1�:,;hR = 0,    �:,;hR = 0 at e = 2 + 1⎭⎬
⎫

 (17) 

Equations (15) and (16) separately represents a system of linear (] − 1)(2 − 1) 

equations in (] − 1)(2 − 1) unknown values for � and �. Using initial and 

boundary conditions (17), and selecting the dimensionless parameters involved in 

dimensionless equations, the system linear equations are solved simultaneously by 

the Gauss Seidal iteration method, developing finite difference codes in Matlab 

programming (Mathews & Fink [20]). Thus � and � are known at all values of ' 

and #. The convergences of each of the computed values of variables � and � at 

different grid points are checked by Root-Mean-Square residuals rs (Al-khawaja 

and Selmi [21]). Convergence can be considered to be achieved, where rs < 10mt; 

where 

  r	 = u∑ ∑ ��:,qwhR − �:,qw��;qx�W:x�  (18) 

  r� = u∑ ∑ ��:,qwhR − �:,qw ��;qx�W:x�  (19) 

5. Results and discussion 

In this paper, steady two dimensional MHD flow of a viscous incompressible 

electrically conducting fluid through a rectangular duct in the presence of an in-

clined magnetic field with porous boundary have been investigated. The pairs of 

porous and non-porous walls are assumed to be non-conducting and the applied 

magnetic field makes an angle with non-porous walls. The problem is described by 

the coupled partial differential equation for velocity and the induced magnetic  
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field. Numerical solutions for the velocity, induced magnetic field and current  

density lines have been obtained by developing finite difference codes in Matlab 

programming with the help of Software Package “MATLAB R2008b”. In all these 

computations, Y = 1 and UVW = 1 are fixed to discuss the effects of other non-

dimensional flow parameters and a uniform 101 × 101 mesh size is used. 

Figures 2a-e show the effect of inclination angle � on 3D velocity distributions � for � = 100 and � = 15. It is observed in these figures that the fluid velocity 

increases and rotates as the inclination angle � of the applied magnetic field  

increases. Since the applied magnetic field makes an angle � with the #-axis,  

and the strength of the applied magnetic field decreases for increasing values of  

inclination angles. 

The effects of inclination angle � on the 3D induced magnetic field are pre-

sented in Figures 2f-j for � = 100 and � = 15. It is also seen that the induced 

magnetic field increases and rotates as the inclination angle � increases.  

Figures 2k-o present the effect of inclination angle � on 2D current density lines z�?, �7{ for � = 100 and � = 15. We have noticed in these figures that the current 

density lines rotate and the rotation increases as the inclination angle � increases.  

It is also observed that the Hartmann layers are formed perpendicular to the direc-

tion of applied magnetic field, and side layers are formed parallel to the direction 

of applied magnetic field. These well known MHD phenomena are seen in these 

figures clearly.  

Figures 3a-c depict the effect of Hartmann � on 3D velocity distribution  

respectively for � = 50, 100 and 150; it is noticed that the velocity distribution 

decreases for the increasing values of the Hartmann number.  

The effects of Hartmann number � on the 3D induced magnetic field are  

presented in Figures 4a-c respectively for � = 50, 100 and 150; it is seen that in-

duced magnetic field decreases as the Hartmann number � increases. 

Figures 5a-c present the effect of Hartmann number � on 2D current density 

lines z�?, �7{ respectively for � = 50, 100 and 150. It is observed that the current 

density lines become flattened and segregated to a narrow region normal to the  

direction of the applied magnetic field called Hartmann layers as the Hartmann 

number � increases. 

In Figures 6a-c, we have presented the effect of suction parameter � (� > 0) on 

3D velocity distribution respectively for � = 5, 15 and 25; it is noticed that the 

fluid velocity decreases near the sucked wall and increases near the injected wall 

due to increasing values of suction parameter. Reverse effects are seen in Figures 

7a-c for increasing values of injection parameter (� < 0). 

The effect of suction parameter � (� > 0) on the 3D induced magnetic field are 

presented in Figures 8a-c respectively for � = 5, 15 and 25; it is seen that induced 

magnetic decreases near the sucked wall and increases near the injected wall as the 

suction parameter � increases. Reverse effects are seen in Figures 9a-c as the injec-

tion parameter � (� < 0) increases.  
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 (a) � = 0° (f) � = 0° (k) � = 0° 

    
 (b) � = 30° (g) � = 30° (l) � = 30° 

    
 (c) � = 45° (h) � = 45° (m) � = 45° 

    
 (d) � = 60° (i) � = 60° (n) � = 60° 

    
 (e) � = 90° (j) � = 90° (o) � = 90° 

Fig. 2. 3D velocity (a-e); induced magnetic field (f-j); 2D current density lines (k-o)  

at various inclination angle � for � = 15 and � = 50 

Figures 10a-c depict that current density lines [�?, �7] close its paths in boundary 

layers and swell towards the sucked wall and compress towards the injected wall as 

the suction parameter � (� > 0) increases. Reverse effects are observed in Figures 

11a-c for the increasing values of injection parameter � (� < 0). This effect is 

more relevant for the high suction/injection parameter. 

Axial velocity and induced magnetic field for different values inclination angle � are presented in Figures 12a-b. It is noticed in these figures that both velocity  

and induced magnetic field increases as the inclination angle increases. 
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 (a) � = 50 (b) � = 100 (c) � = 150 

Fig. 3. 3D velocity for � = 45° and � = 15 at (a) � = 50; (b) � = 100; (c) � = 150 

    
 (a) � = 50 (b) � = 100 (c) � = 150 

Fig. 4. 3D induced magnetic field for � = 45° and � = 15 at (a) � = 50; (b) � = 100; 

(c) � = 150 

    
 (a) � = 50 (b) � = 100 (c) � = 150 

Fig. 5. Current density lines z�?, �7{ for � = 45° and � = 15 at (a) � = 50; (b) � = 100;  

(c) � = 150 

    
 (a) � = 5 (b) � = 15 (c) � = 25 

Fig. 6. 3D velocity for � = 45° and � = 50 at (a) � = 5; (b) � = 15; (c) � = 25 

    
 (a) � = −5 (b) � = −15 (c) � = −25 

Fig. 7. 3D velocity for � = 45° and � = 50 at (a) � = −5; (b) � = −15; (c) � = −25 
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 (a) � = 5 (b) � = 15 (c) � = 25 

Fig. 8. 3D induced magnetic field for � = 45° and � = 50 at (a) � = 5; (b) � = 15;  

(c) � = 25 

    
 (a) � = −5 (b) � = −15 (c) � = −25 

Fig. 9. 3D induced magnetic field for � = 45° and � = 50 at (a) � = −5; (b) � = −15; 

(c) � = −25 

    
 (a) � = 5 (b) � = 15 (c) � = 25 

Fig. 10. Current density lines z�?, �7{ for � = 45° and � = 50 at (a) � = 5; (b) � = 15; 

(c) � = 25 

    
 (a) � = −5 (b) � = −15 (c) � = −25 

Fig. 11. Current density lines z�?, �7{ for � = 45° and � = 50 at (a) � = −5; (b) � = −15; 

(c) � = −25 
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 (a) � at various � (b) � at various � 

Fig. 12. Axial velocity (a) and induced magnetic field (b) at various � for � = 100 and � = 5 

6. Conclusions 

In this paper, the effects of porous boundary and inclined magnetic fields on 
steady two-dimensional flow of an electrically conducting viscous fluid in a rec-
tangular duct have been investigated. The dimensionless partial differential equa-
tions of momentum and induction are transformed into simpler algebraic equations 
using finite difference schemes which are then solved numerically by developing 
codes in Matlab programming. Computed results presented above in terms of 

graphics are listed below:  
1. Both velocity and induced magnetic field increases and rotates as the inclination 

angle � of the applied magnetic field increases. 
2. Current density lines rotate, and rotation increases as the inclination angle � 

increases. Hartmann layers are formed perpendicular to the direction of the  
applied magnetic field and side layers are formed parallel to the direction of  

the applied magnetic field. 
3. Both velocity and induced magnetic field decreases and become flattened as the 

Hartmann number � increases. 
4. Current density lines become flattened and segregated to a narrow region  

normal to the direction of the applied magnetic field called Hartmann layers,  
as the Hartmann number � increases. 

5. Both velocity and induced magnetic field decreases near the sucked wall and in- 
creases near the injected wall for increasing values of suction parameter � (� > 0). 
Reverse effects occur for increasing values of injection parameter � (� < 0). 

6. Current density lines close their paths in boundary layers and swell towards the 
sucked wall and compress towards the injected wall as the suction parameter �  (� > 0) increases. Reverse effects occur when injection parameter � (� < 0) 

increases. 
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