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Abstract. In this paper, we presented some notes in utilizing the fractional integral counter-
parts of the fractional derivatives with non-singular kernels on the action-like integral in
Lagrangian mechanics. Considering a fractional integral, it may suggest that a dissipative
term on the resulting fractional Euler-Lagrange equation can be obtained due to the imposed
kernel. However, in the case of nonsingular kernel operators, different aspects of the
fractional action-like integral were observed, and corresponding (fractionally-modified)
Euler-Lagrange were derived, which imposes new insights on the dynamical system under
the fractional regime.
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1. Introduction

In the context of mathematical formulation on calculus, fractional calculus is
one of the oldest, yet novel topics which has attracted many researchers for many
decades. Recently, there have been many applications of this to various fields, and
they are growing continuously. It is believed to be powerful in describing nonlinear
phenomena since one can access a heterogeneity of the system through the given
fractional order. To elaborate on the novelty of this fractional calculus topic, we refer
to some of the following papers, and the references therein, to the readers [1–10]. In
the past years, studying the dynamics of some physical system, through Lagrange’s
or Hamilton’s equation by generalizing it to the fractional case, intrigued many scien-
tists because of its capability in describing some fractional dimensions. Riewe [11]
started these controversial fractional mechanics through the generalized fractional
Lagrangian and Hamiltonian of the system for a nonconservative system. Later
on, generalized variational problems and Euler-Lagrange equations were established
by Agarwal [12], then followed by Tarasov and Zaslavsky [13] by presenting the
fractional generalization of the nonholonomic constraints in the fractional derivative
case. In 2013, Li and Luo [14] introduced the fractional generalized Hamiltonian
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mechanics. Some physical applications of fractional Lagrangian and fractional Euler-
-Lagrange equations have been studied for the dynamics of a physical system. In [15],
they compared the classical and fractional dynamics of a coupled pendulum using
a fractional derivative operator. Stachowiak and Okada [16] investigated the chaos
in the double pendulum, and the forced double pendulum was presented in [17].

There is much-presented work regarding the formulation of the calculus of vari-
ations in the fractional scheme, in which remarkable results obtained since the re-
sulting fractional Euler-Lagrange equation describes non-conservative terms such as
friction [18]. Several discussions on the emerging of a dissipative term on the action-
like integrals were developed using Riemann-Liouville operators [18–20], and fixing
the inconsistencies started by Riewe’s formulation regarding fractional mechanics.
In this work, we will consider the fractional derivatives with the non-singular kernel,
namely, the Caputo-Fabrizio [21] and Atangana-Baleanu fractional derivatives [3].
To work the context of fractional calculus of variation within these frameworks,
we will investigate if these fractional derivatives can capture the dissipative sys-
tem according to the resulting fractional Euler-Lagrange equation. We can directly
study the fractional action-integral using the fractional integral counterpart of the
said derivatives. Within that scheme, we can directly apply the calculus of variation
in fractional space. The main features of this work are:

• Fractional calculus of variations in the framework of non-singular fractional
framework was studied.

• Corresponding fractional integrals of the derivative operators were used to for-
mulate the action-like integral.

• Classical and fractionalized Lagrangian functions were considered in the pre-
sented framework to compare the resulting fractional Euler-Lagrange’s equa-
tion.

• In the context of non-singular fractional operators, dissipative terms on the
Euler-Lagrange equation were also obtained with a different form, as com-
pared to the dissipative term that were previously reported in the framework of
Caputo and Riemann-Liouville’s operator and conformable derivative [22].

We organized the paper as follows: In Section 2, we started by giving some brief
review about the definitions and properties of the nonsingular derivatives, which are
all essential in the sequel of the study. We presented the fractional Euler-Lagrange
equation in the framework of the two fractional derivatives and the classical and
fractionalized Lagrangian of the system to obtain the corresponding Euler-Lagrange
equation in Section 3.

2. Mathematical preliminaries

In this preliminary, we will present the definitions of the imposed fractional deriva-
tives with the non-singular kernel, namely, the Caputo-Fabrizio and Atangana-Baleanu
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fractional derivatives. Firstly, we introduce the ancient definition of the Caputo frac-
tional derivative and the Riemann-Liouville fractional integral.

Definition 1 Given a function f ∈ H1(a, b), a > b and 0 < α < 1, then the Caputo
fractional derivative is defined as

CDα f (t) =
1

Γ(1 − α)

∫ t

0

f ′(s)
(t − a)α

ds. (1)
2

From the definition above, one can define a fractional integral counterpart, known
as the Riemann-Liouville fractional integral given by the definition:

Definition 2 Let f ∈ H1(a, b), a > b and 0 < α < 1, then the Riemann-Liouville
fractional integral of order α defined as

Iαt f (t) =
1

Γ(α)

∫ t

0

f (s)
(t − a)1−α ds. (2)

2

Note that these definitions are singular at t = s which can account to a non-full
memory kernel. To remedy these contexts, fractional derivatives were introduced
and nonsingular kernels were imposed. According to equation (1), changing the
kernel (t − a)−α by the exponential function exp−α(t − s)/(1 − α) and the normal-
ization function 1/Γ(1 − α) to 1/

√
(2π(1 − α)), the new fractional derivative with

a nonsingular kernel can be defined, and it is called the Caputo-Fabrizio fractional
derivative [21], given by the definition:

Definition 3 Let f ∈ H1(a, b), a > b and α ∈ (0, 1], then the Caputo-Fabrizio frac-
tional derivative is defined as

CF Dα f (t) =
1

(1 − α)

∫ t

0
f ′(s) exp

(
−

α

1 − α
(t − s)

)
ds. (3)

2

From the definition (3), the associated fractional integral can be derived and was
shown by Losada and Neito [23]. Consider the fractional differential equation

CF Dα f (t) = g(t), (4)

then we have the definition:

Definition 4 Let α ∈ (0, 1] be the fractional order of the Caputo-Fabrizio fractional
derivative, then the associated fractional integral of a function f ∈ H1(a, b) is given
by

CF Iα f (t) = (1 − α) f (t) + α

∫ t

0
f (s)ds. (5)

2
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Note that the fractional integral preserves the nature of the classical integral with-
out any singularity, compared to the Riemann-Liouville fractional integral. Evidently,
in studying physical systems, fractional derivatives with a nonsingular kernel show
more accessible memory effects. On the other hand, Atangana and Baleanu [3] rede-
fined the Caputo-Fabrizio fractional derivative by generalizing the exponential kernel
to a one parameter generalized Mittag-Leffler function defined as

Eα(tα) =

∞∑
k=0

tαk

Γ(αk + 1)
. (6)

In which for α = 1, the function reduces to a series version of an exponential function.

Definition 5 Let f ∈ H1(a, b), a > b andα ∈ (0, 1], then the Atangana-Baleanu
fractional derivative is defined as

ABDα f (t) =
1

(1 − α)

∫ t

0
f ′(s)Eα

(
−

α

1 − α
(t − s)α

)
ds. (7)

2

This definition of the fractional derivative is more powerful since it generalizes
the memory kernel imposed in the Caputo-Fabrizio fractional derivative [5, 6, 8].
However, both of these definitions contain a nonsingular kernel and give access to
full memory, which is advantageous in studying the physical system in fractional
space. Note that definition (5) follows a power-law kernel, which is the same as in
the Caputo derivative, so it is also known as an Atangana-Baleanu fractional deriva-
tive in the Caputo sense. Now, following the same form of differential equation in
(4), we can define the associated fractional integral.

Definition 6 Let α ∈ (0, 1] be the fractional order of the Atangana-Baleanu fractional
derivative in the Caputo sense, then the associated fractional integral of a function
f ∈ H1(a, b) is given by

ABIα f (t) = (1 − α) f (t) +
α

Γ(α)

∫ t

0
f (s)(t − s)α−1ds. (8)

2

We have introduced the definitions of the nonsingular fractional derivatives
together with their associated fractional integral counterparts. Additionally, the
introduced fractional derivative operators are all linear operators and reduced to
the classical calculus when α → 1. The important part of this work is the given
associated fractional integrals. Both of the fractional integrals in (5) and (8) have
the same first term, which inspired this work in studying the fractional action-like
integral. According to [18], the fractional action-like integral can be reduced to the
fractional Euler-Lagrange equation with a dissipative term when the definition of the
Riemann-Liouville fractional integral was utilized. With this notion, we will investi-
gate the fractional action-like integral and its consequential fractional Euler-Lagrange
equation to check if the claimed dissipative term can exist in nonsingular fractional
derivatives.
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3. Fractional action-like integral
and fractional Euler-Lagrange equation

In this section we will investigate the fractional action-like integral in the frame-
work of the nonsingular fractional derivative, using their fractional integral counter-
part to formulate the Euler-Lagrange equation. With the help of calculus of variation,
we will first define a generalized path coordinate q(t) with the variational principle,
and we parametrize the path coordinate as

q(β, t) = q(0, t) + βη(t), (9)

such that η(ta) = η(tb) = 0, and q(0, t) = q(t).

Proposition 1 If q is an extremizable path, then applying the fractional derivative
operators (3) and (7) to the parametrized path coordinate (9), we have

∗Dα
t q(β, t) = ∗Dα

t q(0, t) + β ∗Dα
t η(t). (10)

2

We also recall the definition of fundamental theorem of the calculus of variation,
which is very important in the subsequent discussions of this paper.

Definition 7 For any arbitrary continuous function η(t) up to its second derivative,
and if ∫ tb

ta
G(τ)η(τ)dτ = 0, (11)

then G(τ) must identically vanish in the interval [ta, tb]. 2

Now, we can formulate the fractional action-like integral in the variational problem
in the subsequent definitions.

Definition 8 Suppose we have a continuous manifold T and let the L be a classical
Lagrangian function L = L(q(t), q̇(t); t) : <3d → <, d ≥ 1. So, for any smooth path
q : [ta, tb] → T with a fixed boundary condition. We define the the fractional action
integral under the nonsingular kernel scheme as:

∗S α[q] = ∗Iα (L(q(t), q̇(t); t)) , (12)

such that the notation ∗(...) hold for Caputo-Fabrizio and Atangana-Baleanu fractional
integral operators. 2

Definition 9 Let the fractional Lagrangian function be L = L(q(t), ∗Dαq(t); t) :
<3d → <, then the we can write the fractional action integral under nonsingular
kernel scheme as with fractional Lagrangian function as

∗S α[q] = ∗Iα
(
L(q(t), ∗Dαq(t); t)

)
. (13)

2
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From these definitions, we have generalized the action-like integral in terms of
fractional integrals. The Lagrangian function can interplay between fractional and
classical regimes according to the variation principle in equations (9)-(10). The afore-
mentioned definitions in this section do not give any physical implication yet, for
the sake of the mathematical aspect, we will follow the given definitions. One cer-
tain physical implication when α → 1 is known. We will know the importance and
possible implications of fractional order imposed on the system in the subsequent
theorems.

Theorem 1 (Caputo-Fabrizio operator) If q : [ta, tb] → T is the extermizable path
coordinate of the action-like integral with the classical Lagrangian function L =

= L(q(t), q̇(t); t) : <3d →<, then

CFS α[q] = (1 − α) (L(q(t), q̇(t); t)) + α

∫ t

0
(L(q(s), q̇(s); s)) ds. (14)

So, from the calculus of variation and extremizing CFS α[q], the Euler-Lagrange
equation is unaffected by fractionalizing the action-like integral. That is,

∂L
∂q
−

d
dt

(
∂L
∂q̇

)
= 0. (15)

2

(Proof ): From the variational principle shown in equation (9), then the fractional
action integral in (14) is extremum from [0, t], that is,

d
dβ

CFS α[q] = 0. (16)

So, in the framework of Caputo-Fabrizio fractional integral (5), we have

(1 − α)
d

dβ
(L(q(t), q̇(t); t)) + α

∫ t

0

d
dβ

(L(q(s), q̇(s); s)) ds = 0. (17)

Then, we rewrite the above expression as

(1 − α)
∫ t

0

d
ds

(
d

dβ
(L(q(t), q̇(t); t))

)
ds︸                                  ︷︷                                  ︸

A

+α

∫ t

0

d
dβ

(L(q(s), q̇(s); s)) ds︸                               ︷︷                               ︸
B

= 0. (18)

Evaluating the terms in equation (18), we start with A and by applying integration by
parts

A =

∫ t

0

d
ds

(
d

dβ
(L(q(t), q̇(t); t))

)
ds =

∫ t

0

d
ds

(
∂L
∂q

∂q
∂β

+
∂L
∂q̇

∂q̇
∂β

)
ds

=

∫ t

0

[
d
ds

(
∂L
∂q

)
η(s) +

∂L
∂q
η̇(s) +

d
ds

(
∂L
∂q̇

)
η̇(s) +

∂L
∂q̇

d
ds
η̇(s)

]
. (19)
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Simplifying further and applying repeated integration by parts, we get the final
expression of the term

A =

∫ t

0

d
ds

[
∂L
∂q
−

d
ds

(
∂L
∂q̇

)]
η(s)ds +

∫ t

0

(
∂L
∂q
−

d
ds

(
∂L
∂q̇

))
d
ds
η(s)ds. (20)

Hence, by taking another integration by parts on the second term in the right-hand
side of the equation (20), we can deduce that the term A = 0. So, we are left with the
term B of equation (18), then the fractionalize action-like integral is proportional to
the classical form and is weighted by the fractional order. With the help of the fun-
damental lemma of the calculus of variations, the term B can be simplified. There-
fore, the classical Euler-Lagrange equation is preserved under the fractionalization of
an action-like integral. This completes the proof of theorem 1.

For the case of a fractionalized Lagrangian, we present the following Lemma of
theorem 1.

Lemma 1 If q : [ta, tb] → T is the extremizable path coordinate of the fractional
action-like integral in the fractional space with fractional Lagrangian function Lα =

= Lα(q(t), CF Dq(t); t) : <3d → <, then the Euler-Lagrange equation is fractional-
ized with the form

∂L
∂q
−

[
CF Dα

t

(
∂L

∂ CF Dα
t q

)]
= 0. (21)

2

Proof : We can express the fractional action-like integral with fractionalized
Lagrangian function as

CFS α[q] = (1 − α)
(
Lα(q(t), CF Dα

t q(t); t)
)

+ α

∫ t

0

(
Lα(q(s), CF Dα

s q(s); s)
)

ds, (22)

and following the same steps made in proving theorem 1, we can get the result
of the fractional Euler-Langrange equation because that were done fractionalizing
the Lagrangian function.

From the two theorems presented above, we present the next corollary.

Corollary 1 Suppose that the path coordinate q : [ta, tb]→ T is extremizable in both
classical and fractional sense. Therefore,

d
dβ

(L(q(t), q̇(t); t)) =
d

dβ
(
Lα(q(t), ∗Dα

t q(t); t)
)

= 0. (23)
2

The proof of corollary 1 can directly shown through simple theorems in fundamen-
tal calculus, and we leave the steps to the readers. It is evident that the claimed
dissipative term in fractional Euler-Lagrange equation, claimed in [18–20, 22],
is not present in the framework of the Caputo-Fabrizio operator for the classical
Lagrangian. The nature of the Euler-Lagrange equation is preserved under this frame-
work. In theorem 1, the physical sense of the Euler-Lagrange equation is independent
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of the fractional-order α, considering a classical Lagrangian in fractional action-like
integral. However, in the case of the fractionalizing Lagrangian function in a frac-
tional action-like integral, we obtain a fractional Euler Lagrange equation (21). The
physical significance of this formulation is not clear or may not have a physical mean-
ing at all. To have a better view of formulation (21), we will consider the fundamental
definition of the Lagrangian in a fractional sense, which is quadratic in CF Dα

t q(t) as

Lα =
1
2

m
(

CF Dα
t q(t)

)2
− V(q), (24)

where the right-hand-side represents kinetic and potential energy. As we can see, this
fractional Lagrangian function does not contain any frictional or dissipative terms.
However, if we apply the formulation (21), the dissipative term will emerge. Now,
substituting (24) to (21), we have the fractional equation of motion

CF Dα
t

[
CF Dα

t q(t)
]

=
1
m

F(q(t)), (25)

where F(q(t)) = −
dV(q)

dq
. Equation (25) can be rewritten in its equivalent form

by applying the Laplace transform repeatedly, as

mq̈(t) − α2F(q) = 2α(1 − α)
dF(q(t))

dt
. (26)

Hence, the dissipative term is obtained for this formulation as predicted in a physical
model [17, 24]. Consequently, this is not the same kind of dissipative term as shown
for Caputo’s sense in [19,20] and the conformable derivative sense [22]. A new defi-
nition can be presented as a consequence of formulation (21).

Definition 10 Let q : [ta, tb] → T be the extremizable path coordinate in the
fractional scheme. Then, the fractional Euler-Lagrange equation for the fractional
Lagrangian function Lα(q(t), CF Dq(t); t) is defined as

d
dt
∂L
∂q̇
− α2 ∂L

∂q
= 2α(1 − α)

d
dt

(
∂L
∂q

)
+ (1 − α)2 d2

dt2

(
∂L
∂q

)
, (27)

2

which is equivalent to the fractionalized Euler-Lagrange equation in (21).

Remark 1 Definition (10) is the fractional Euler-Lagrange equation in the frame-
work of Caputo-Fabrizio operator, and the dissipative term is given on the right hand-
side of the equation (27). The classical Euler-Lagrange equation is recovered when
α→ 1. 2

Remark 2 The dissipative term we obtain in (27) is called intrinsic dissipation since
it can emerge when taking the equation of motion of a system from the Euler-Lagrange
equation. A system dissipating its energy in the environment is the best description
of this formulation. 2
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Let us now consider the Atanga-Baleanu operator (7)-(8). We start at the fractional
action-like integral with classical Lagrangian function and derive the corresponding
Euler-Lagrange equation.

Theorem 2 (Atangana-Baleanu operator) If q : [ta, tb] → T is the extremizable
path coordinate of the action-like integral with the classical Lagrangian function
L = L(q(t), q̇(t); t) : <3d →< in the Atangana-Baleanu framework, then

ABS α[q] = (1 − α) (L(q(t), q̇(t); t)) +
α

Γ(α)

∫ t

0
(L(q(s), q̇(s); s)) (t − s)α−1ds, (28)

such that the Euler-Lagrange equation takes the form

∂L
∂q
−

d
dt

(
∂L
∂q̇

)
=

1 − α
t − τ

∂L
∂q̇
. (29)

2

Proof : From the given fractional-action like integral in the Atangana-Baleanu sense
and considering the fact that the path q(t) is extremizable, the action is extremum

if
dABS α[q]

dβ
= 0. By corollary 1, the first term of (28) vanishes, and by variational

principle, ∫ t

0

d
dβ

(L(q(s), q̇(s); s)) (t − s)α−1ds = 0. (30)

This can be simplified into∫ t

0

([
∂L
∂q
−

d
dt

(
∂L
∂q̇

)]
(t − s)α−1 + (α − 1)(t − s)α−2

(
∂L
∂q̇

))
η(s)ds = 0, (31)

by the definition of a fundamental theorem in variational calculus. Therefore, we
have

∂L
∂q
−

d
dt

(
∂L
∂q̇

)
=

(1 − α)
t − τ

∂L
∂q̇
. (32)

The Euler-Lagrange equation, with the classical Lagrangian, which contains
a dissipative term as shown on the right-hand-side of equation (32) under the frame-
work of the Atangana-Baleanu operator. This is significantly different from the obtain
Euler-Lagrange equation under the framework of the Caputo-Fabrizio operator.

Definition 11 The equation (32) represents a classical Euler-Lagrange equation
with a weighted generalized dessipative force

Qα =
(1 − α)
t − τ

∂L
∂q̇
. (33)

2



98 N.A. Rangaig

Definition 12 Consider a generalized extremizable path coordinate q : [ta, tb] → T
and a classical Lagrangian function L(q(t), q̇(t); t), then the classical Euler-Lagrange
equation under the Atangana-Baleanu operator is

∂L
∂q
−

d
dt

(
∂L
∂q̇

)
= Qα, (34)

such that Qα → 0 when α→ 1. 2

Comparing the two classical Euler-Lagrange equations between the framework of
Caputo-Fabrizio (15) and Atangana-Baleanu (34), physical implications are directly
observed. Hence, the Atangana-Baleanu operator gives more memory effect and
direct physical implications than the Caputo-Fabrizio operator does. We present the
Lemma below for the fractional Lagrangian function onto the fractional action-like
integral under the framework of the Atanga-Baleanu operator.

Lemma 2 If q : [ta, tb] → T is the extermizable path coordinate of the fractional
action-like integral in the framework of Atangana-Baleanu operator with fractional
Lagrangian function Lα = Lα(q(t), ABDαq(t); t) : <3d → <, then the fractional
Euler-Lagrange equation has the form

∂L
∂q
−

1
(t − τ)α−1

[
ABDα

t

(
(t − τ)α−1 ∂L

∂ ABDα
t q

)]
= 0. (35)

2

Proof : The proof of Lemma 2 is straightforward by evaluating the integral∫ t

0

(
∂L
∂q
η(s) +

∂L
∂ABDαq

ABDαη(s)
)

(t − s)α−1ds = 0, (36)

and applying the integration by parts and the definition of fundamental theorem in
calculus of variation.

Different types of Euler-Lagrange equations were derived from the framework of
fractional operators. In a dynamic system, one can establish both the classical and
fractionalize Lagrangian, depending on the system. Utilizing the fractional actional-
like integral, we can then derive the Euler-Lagrange equation. However, a glimpse of
physical implications can initially be established, but the real-world significance can
point out whether these formulations are physically applicable when an experiment
or direct observation were done. Additionally, even the fractionalized Lagrangian
function can imply a fractional Euler-Lagrange equation, it can still be expressed
as a classical Euler-Lagrange equation, so that the dissipative term can be extracted
directly.

4. Conclusion

We have presented the new aspects of the Euler-Lagrange equation obtained
from the fractional action-like integral under the framework of Caputo-Fabrizio and
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Atangana-Baleanu operators. The nature of the classical Euler-Lagrange equation
is preserved under the Caputo-Fabrizio operator due to the limited memory kernel,
compared to the framework of Atagana-Baleanu operator. The concept of additional
dissipative term on the Euler-Lagrange equation was obtained under the Atagana-
-Baleanu operator. The nature of the Lagrangian of the system under this study is
compared to a classical and fractionalized type in which the two operators give unique
results based on the considered Lagrangian function. More importantly, the memory
function in both operators is evidently essential in studying physical mechanics under
fractional dimensions. Additionally, the initial findings of this paper are the inclusion
of the dissipative term as shown in the obtained fractionally-modified Euler-Lagrange
equation which is far different to the ones obtained using the Caputo operator, that
contains a singular kernel function [13, 18–20, 25], and for the conformable opera-
tor [22]. Applications of the concepts found in this paper are an essential extension
of this current work, such as the works done in [26, 27], the invariant conditions,
Noether’s theorem, and the DuBois-Reymond condition. Lastly, the continuation of
this work will focus on finding the energy function, which can describe the origin
of the found dissipative term on the fractionally-modified Euler-Lagrange equation
and to further extend with their physical implications.
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