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Abstract. The present study proposes a new explicit nonlinear scheme that solves stiff and
nonlinear initial value problems in ordinary differential equations. One of the promising
features of this scheme is its fourth-order convergence with strong stability having an
unbounded region. A modern approach for relative stability growth analysis is also presented
under order stars conditions. The scheme is also good in dealing with singular and stiff type
of models. Comparing numerical experiments using various errors, including maximum
absolute global error over the integration interval, absolute error at the endpoint, average
error, norm of errors, and the CPU times (seconds), shows better performance. An adaptive
step-size approach seems to increase the performance of the proposed scheme. The numerical
simulations assure us of .Z-stability, consistency, order, and rapid convergence.
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1. Introduction

Various real-world applications of natural and physical laws are expressed as
mathematical models based upon different types of ordinary differential equations.
In [1-4], it has been well explained that the differential equations are useful for un-
derstanding the natural and physical world around us with the help of models includ-
ing mass-spring systems, electrical circuits, population growth, and a few more. It is
mostly impossible to get the exact solution of such ordinary differential equations by
analytical methods. In such cases, when the analytical method does not work, we try
to approximate a solution on the grid points (x;,y;), i = 1,2,3,...,n. There are many
explicit and implicit numerical techniques to approach the approximate solutions of
scalar and dynamical models. In [5—7], authors have mainly discussed applications in
engineering, applied mathematics, and other scientific areas, including analysis of nu-
merical methods to improve the order of convergence, the truncation error, stability,
and reduction of the computational time. In the derivation of the method discussed
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in [8], derivatives are not involved, and the method solves large systems of ordinary
differential equations with reasonable accuracy.

It is described in [9-15] that if initial value problems have singularities and oscilla-
tory solutions, then conventional approaches including single-step Runge-Kutta and
linear multistep methods cannot perform well, whereas unconventional approaches
can be used to achieve the solution with higher-order numerical accuracy and low
computational cost. Such approaches have stronger stability properties as well. Some
non-linear or one-step rational schemes in [16, 17] or two-step in [18] are applicable
for stiff and singular types of non-linear initial value problems. These schemes deal
with the singularities at a pole at a given time interval with a low computational cost.
The linear RK, non-linear RK, and other such methods do not perform well for a sin-
gular type of non-linear equation due to their polynomial nature. These methods do
not work well in situations having poles and have some weaker conditions on stabil-
ity. This is the major drawback of the conventional methods of the RK type. The aim
of the proposed non-linear rational scheme is concerned with the convergence order
having good stability characteristics. The proposed method uses four evaluations of
derivatives with higher computational accuracy. We will first derive the scheme with
constant step size and then consider its implementation with adaptive step size in this
study.

The paper is arranged as: The formulation of the scheme is developed by a non-
-linear rational expression in Section 2, while the theoretical analysis is carried out
by local error analysis, stability, and order stars in sub-sections. The implementation
of the adaptive step-size strategy is available in Section 3. In Section 4, a few experi-
mental results evaluate the new scheme’s effectiveness and compare it to schemes of
a similar order. Finally, Section 5 gives the conclusion.

2. Formulation of the proposed scheme

Consider the following initial value problem of the form:

Y (t) = f(t,y(1)), (1)

where y(¢t) € R" and f(¢,y(f)) : R x R" — R" with initial condition y(a) = yo over
the interval ¢ € [a,b]. Such types of initial value problems have a unique continuous
solution y(z) as per Lipschitz condition as described in [4]. The approximate solu-
tion y; of (1) at t = #; is computed that which results in y; = y(#). The theoretical
solution is denoted by y(#), where t, = a+kh and k =0, 1,...,N. The constant grid

b—
size used for this proposed scheme is specified by & = Ta‘ Using the ideas from

a recently published work [19] where authors have proposed a rational type scheme
with third-order convergence, we attempt to formulate a fourth-order scheme to find
the approximate solution yiy; of (1). At t = #¢41, we imply that the approximate
solution is:
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B a+Bh
e = vh+ oh2 + 013

(@)

where «, 8,7, ¢, and 6 are unknown parameters that would be governed by the
known values at #;. It may be noted that the denominator in (2) should not be vanished
for any value of the parameter. After expanding (2) using the Taylor series, we get
the following expression:

a+(B—oy)h+(~ad —By+ay )i’ +(-ab — o +20y9 + By’ — ay’)n’
Yer1 = +(2a70 — PO+ g’ +2By9 —3ar’ ¢ — By + oy’ )k’ +O(h°).
+(—206 —BO+ 0’0 — B +2ayd* + BV — ay’ ¢)n
(3)
Associating it through the Taylor’s series of y(x1;) and after comparing the co-

efficients of the obtained series up to & (h*), we will have a non-linear system from
which we can easily compute values of unknown parameters as follows:

O = Yk, (4)
LRV 36Y o by i — 8" i — 6k — 249k 5
ﬁ—z 1 2_6 /] 6/3 ) ()
Y7V — Oy kY 'k + 6Y'%
. 2 2

(A Ay 6y vk — 12y, 6
’Y_Z 12 6viv'y. 4 6y ) ©)

Vi Yk ViV Y T 6y

: 2 2
o= 1 (v — 20" yive — 0"y + 6% v o
4 2 _ ¢ ///+6/3 )
Vi Yii — OV Yy T 0¥y
: 2 P 3
o | 3y vk —4yy" — 6y + 24y vl — 18y; ®
- ﬂ "2 6viv'y. 4+ 6 /3 :
Vi Vi — OViy Y, 16y

Substituting the values of these parameters in (2) and after simplifying it further,
we get the nonlinear scheme with fourth-order convergence as shown below:

6((4(yk +2hfe) jkyi — (ke — 683 hys — 12(3hfic + 2yk) gic fivi + 24(hfic + i) f7)
3(Hgiyr — 202 f2 + 2 fiyi — 292 hly — 412 iy + 12((2hfi — yi) P gr — 2h* fE
F2hfiyk +2y7) i — 18K3 g} + 36h(hfi +yi)gt — T2((hfi +2v) gk +212) fi
)

Vi+1 =
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2

d . d
where yi = y(t), Yer1 = Y(teg1)s fx = [t k), 8k = Ef(fkayk)a Jk= Pf(tkv)’k)’
3

d
and [ = s f(tx,y). It may be noted that the scheme requires 4 derivatives prior to

starting the iterations. This approach makes the scheme stronger than several existing
approaches.

2.1. Theoretical analysis

In this section, the proposed fourth-order scheme given in (9) is analyzed theoret-
ically.

2.1.1. Local error analysis

The investigation of the local truncation error determines the order of convergence
for any numerical technique designed to solve initial value problems. Firstly, to find
the order of consistency of the newly formulated scheme, we define the local trunca-
tion error as:

L(u(t),h) = u(t +h) — ultesr), (10)

where u(?) is an arbitrary function specified over the integration interval [a,b], we
can differentiate it as many times as we require. Expanding (10) via Taylor’s series,
the scheme’s local truncation error can be described as:

iv. 112 m2_y

LT 1 4y§fy’”kyk Sy = 24900 e+ 603 v — 80 % |y o ()
n+l = 24" 12 . m2_y no 2y "4 )
245y 3 — 120005 — 80y 360y "2y, — 80y

(11)
where P = 480" y; + 2880()”% —Y"x)y'x # 0. The notations y'y, ¥4, ¥4, y](:v)’

and y,(cv) indicate the first-, second-, third-, fourth- and fifth-order derivatives of y(r)
computed at the point #.

2.1.2. Stability analysis, order stars and consistency

The Dahlquist’s model given below:
y = Ay, Re(A) <0, (12)

is always used to analyze stability of a newly formulated scheme for initial value
problems. When the proposed nonlinear scheme (9) is employed on (12), then
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the following difference equation is achieved:

B 6(hA +4) (13)
I T A3 Z6h2AT + 18hA — 247"
Setting z = hA, the rational stability function is written as follows:
6(z+4
(2) = S (14)

B —62+187-24"

and the region of absolute stability is defined as:
R={zeC:|P(z)|<1}.

The region of absolute stability of the proposed nonlinear scheme (9), as shown in
Figure 1, consists of the entire left half complex plane, which means that the scheme
has characteristics of being .o7-stable (see [2]) while its 3D graphic surface is also
obtained in Figure 2. In addition, the scheme satisfies the condition ZLim@@(z) =0

which means that the proposed scheme is not only .o7-stable but .Z’-stable as well.
Furthermore, since the scheme has at least a fourth-order of accuracy, it therefore also
satisfies the condition of consistency. Finally, the order stars capture a more chaotic
pattern by showing the detection of all poles, zeros, and interpolation points as shown
in Figure 3.

Im(@)

Fig. 2. 3D graphical surface view of the proposed fourth order nonlinear scheme
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Fig. 3. The placement of order stars emerging from the stability
rational function of the proposed scheme

3. Adaptive step-size strategy

The newly proposed scheme in (9) has been formulated with a constant step-
size h in the previous section. Nevertheless, as several authors such as [20] have
pointed out, a numerical integrator must be more suitable for an adaptive step-size
formulation that is based on an explicit formula.

Now, the proposed scheme is discussed in adaptive step-size form by using a lower
order approach to create a strategy to estimate the local error (LE,) at the end-point
on the interval. The cost of the computational process will be less in this case. We
used a similar embedded type approach which has been used in [19] as given below:

20612 + 6 fc(fi — hjk)yi + (hky — 3jk)y?)
12f2 +3h2f2 — fih(hki+ 3 ) + (2hke — 6k ) vk

Vil = 15)
Firstly, we want to get an acceptable estimate value of LE, by a lower order scheme.
We will follow the same strategy as described in [1]. Now, consider:

LE, = y(tx +h) — Yis1-

The local error can be obtained for y;; by using a scheme of order p, whereas for
Yi+1, We can obtain it by using a strategy of order p + 1 as shown below:

EST = {y(t +h) = yir1} — i1 =yt +h)} (16)

= LE, — O(h"*?).

The local error LE, is of order & (h”“), therefore, the error dominates in (16)
for small values of A. This is a computational local error estimation of the lower-
-order formula. We can estimate the error in y;; by comparing it to the more accurate
approximate solution of y;_, ;. This is a way to find a pair of embedded type of scheme
that shares as many functions evaluations as possible. Local extrapolation is the tech-
nique of advancing the integration using the more accurate result in y; ;.



A new nonlinear .Z-stable scheme with constant and adaptive step-size strategy 13

The step would be rejected if the estimated error is too large compared to the given
local error tolerance (), and then it further tries to take a smaller step size. We only
worked out the order of the first nonzero term in our expansion of the local error.
If another term is included in the expansion, then we get the following:

Y(te+h) —yeer = P o(t) + O(hPH2). (17)
If we take a step from 7, with a new step size ph, we will reach at the following step:

(Ph)? ' (1) + O (ph)" > = p W (1) + O/(7*?)

= pPHEST 4+ 0(hP+?).

The largest step size that we predict will pass the error test corresponding to p so
that:

|pPTEST|| =~ 7.
The new step-size is decided as follows:

T ptl
Ruew = hota W . (18)

If the local error is smaller than the given tolerance, it is necessary to increase step
size h. Larger step sizes reach the end of the integration interval in fewer steps, mak-
ing the computation more efficient. However, the step size is estimated using several
approximations. A failed step is always costly. The algorithm (19) uses a fraction (1)
of the expected step size as shown below:

T P+
hnew:nhold |:||EST||] . (19)

Here, p = 3 denotes the order of the lower order scheme, and 0 < 17 < 1 denotes
areasonable adjustment factor for avoiding unsuccessful steps. We use 11 = 0.9 in our
numerical experiments.

4. Numerical experiments

Various numerical experiments have been carried out to test the performance of
the proposed scheme given in (9). The comparison is made with the fourth-order
Taylor series and a nonlinear RK type scheme based upon harmonic mean (RK-HM)
[21]. The accuracy is measured by using the following error formulas: Maximum
absolute error: E,, = max||y(#)— yk||, Absolute error at the end point r = b:

1 N N
E,_, = |ly(b) — yk||, Average error: E4 = N Zyk, error norm: Epopm = 1 | Z llve|l?
k=0 k=0
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and CPU time measured in seconds. Here N is the total number of sub-intervals. The
theoretical and numerical solutions of a test problem at point 7, are represented by
() and yy, respectively. MAT LAB software having version ‘9.2.0.538062(R2017a)’
will be used for numerical simulations. Here, NI stands for the number of iterations.

4.1. Example 1

Consider a non-autonomous initial value problem [19]:

Y(t) = (A —1)e ™ —y(t), A = 500, (20)

and with initial condition y(0) = 1 over interval [0, 1] with y(f) = 2¢~" —e™*. The
proposed scheme in (9) was applied to this problem, and the results of different errors
are given in Table 1 by using different numbers of step size values. In this problem,
the performance of (9) is better than Taylor and RK-HM. It is observed in Table 1 that
the errors are decreased with various constant step sizes. When we apply the adaptive
step size approach with different tolerances with 2 = 0.1, the new scheme reduces
the steps as shown in Table 2.

Table 1. The absolute error at the endpoint in the first row, maximum absolute error in the second row,
the average error in the third row, the norm in the fourth row, and CPU time in the fifth row
with constant step-size approach on the integration interval [0, 1] for the IVP (20)

Scheme/NI 128 256 512 1024 2048
1.6917e+00  7.6205e-02  3.7569e-03  2.0402e-04  1.1819e-05
4.5253e+00  2.0414e-01  1.0064e-02  5.4662e-04  3.1665e-05

Taylor 2.8722e+00  1.3004e-01  6.4245e-03  3.4919e-04  2.0236e-05
3.4062e+01  2.1719e+00  1.5143e-01  1.1629e-02  9.5270e-04

1.8657e-02 1.4480e-02  2.5393e-02  1.4602e-02  7.2115e-02

1.6328e-01  5.4077e-02  1.3742e-02  3.7686e-03  9.1029e-04

4.3700e-01 1.4563e-01 3.8866e-02  1.0146e-02  2.5126e-03

RK-HM 2.7721e-01 9.2272e-02  2.3516e-02  6.4483e03 1.5590e-03
3.2876e+00  1.5410e+00  5.5444e-01  2.1473e-01  7.3403e-02

2.2657e-02  2.2280e-02  3.4330e-02  6.9855e-02  6.3042e-02

1.2163e-00 1.2595e-03  8.6301e-05  5.0510e-06  2.8597e-07

3.8659e-02  5.3299e-03  3.8887e-04  2.6225e-05  1.6693e-06

Proposed 2.0703e-02  2.1611e-03  1.4869e-04  8.7267e-06  4.9509e-07
2.4587e-01 3.6234e-02  3.5228e-03  2.925%-04  2.3512e-05

3.4330e-02 1.8204e-02  3.2943e02  2.8086e-02  3.4555e-02

Table 2. The number of steps # in the first row and the final absolute error with adaptive step-size

approach on the integration interval [0,0.5] for the IVP (20)

Scheme/Tolerance 1077 1072 1073 107%
Taylor 9 10 13 18
6.286e-02 1.3848e-02  4.4411e-03  9.5161e-04
8 10 18 33
RK-HM 3.0747¢-02  1.2038e-02  4.4411e-03  9.1439¢-04
Proposed 8 10 13 20
54731e-03  6.0627e-04 1.1896e-04 1.8482¢e-05
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4.2. Example 2

Consider a Bernoulli differential equation.

1y =y*In(t) -y, 1)

and with initial condition y(0.1) = —2 at interval [0.1, 1] which has exact solution

1

t)= .
Y = T 5 i (10) 71 (1)

In Table 3, we can observe that the Taylor series and RK-HM could not solve this
problem and fail before the singularity, whereas the new scheme is capable of solving
that issue. The adaptive step size implementation is represented by Table 4. As can
be seen, the proposed strategy took quite a few steps to achieve an accurate result.

Table 3. The absolute error at the endpoint in the first row, maximum absolute error in the second row,
the average error in the third row, the norm in the fourth row, and CPU time in the fifth row
with a constant step-size approach on the integration interval [0.1, 1] for the IVP (21)

Scheme/NI 128 256 512 1024 2048
Taylor div div div div div
RK-HM div div div div div
7.4302e-09 4.6697e-10  1.1715e-09  3.7251e-10  1.4985e-11
7.8761e-05  4.9536e-06  1.3352e-04  1.7389%e-05  2.3385e-06
Proposed 7.5837e-07  4.5842¢-08  3.1431e-07  3.8293e-08  3.0519e-09
7.9359-05  6.7368e-06  1.3445e-04  1.9814e-05  3.082e-06
2.0781e-02  2.7003e-02  2.7643e02  3.0142e-02  5.3498e-02

Table 4. The number of steps # in the first row and the final absolute error with adaptive step-size
approach on the integration interval [0.1, 1] for the IVP (21)

Scheme/Tolerance 1077 1072 1073 1074
Taylor div div div div
RK-HM div div div div
Proposed > 6 1 16
3.2771e-04  6.6587e-05 1.7878e-05  3.4765e-06

4.3. Example 3

Consider an autonomous non-linear initial value problem [18, 20] having singu-
larity att = 7 /4:

Y (1) =1+y*y(0)=1,t €[0,1], (22)

with exact solution y(r) = tan(s + 7 /4). In this problem, Table 5 proved that a fourth-
T
order Taylor series and RK-HM schemes could not solve this problem at —, and the

proposed scheme gives better results and it crosses the singularity without any diffi-
culty. Furthermore, Table 6 has shown that the adaptive step-size approach reduces
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the error at the endpoint of the interval and takes fewer steps in the proposed scheme

in comparison.

Table 5. The absolute error at the endpoint in the first row, maximum absolute error in the second row,

the average error in the third row, the norm in the fourth row, and CPU time in the fifth row
with a constant step-size approach on the integration interval [0, 1] for the IVP 22

Scheme/NI 32 64 128 256 512
Taylor div div div div div
RK-HM div div div div div
2.1147e-06  1.3319e-07  8.3983e-09  4.6076e-07  4.2398e-08
4.0092e-03  2.5356e-04  2.0774e-05  1.5567e-03  6.5608e-04
Proposed 1.2839e-04  4.9278e-06  3.4837e-07  1.0736e-05  2.0004e-06
4.0109e-03  2.5618e-04  2.6369¢-05  1.6401e-03  6.7619e-04
1.6146e-02  1.9831e-02  2.0672e-02  1.7373e-02  1.8292e-02

Table 6. The number of steps » in the first row and the final absolute error with adaptive step-size
approach on the integration interval [0,0.5] for the [IVP 22

Scheme/Tolerance 107" 1072 1073 1074
Taylor 3 4 6 ?
1.1613e-01  2.7449¢-02  6.2407¢-03  1.5063e-03
3 4 5 8
RK-HM 1.0594e-01  1.8345e-02  9.2097e-03 8.644e-04
Proposed 2 3 4 7
1.6783e-02  2.4315e-03  4.1979¢-04  5.0274e-05

5. Conclusion

We have constructed a new nonlinear explicit scheme in this paper that effec-
tively solves initial value problems in ordinary differential equations. The scheme is
fourth-order convergent, consistent, and .Z-stable. Due to .Z-stability property, the
scheme is more efficient for solving singular and stiff models. The numerical results
produced by the proposed scheme for the problems under consideration show that it
improves some existing approaches. The adaptive step-size formulation of the pro-
posed scheme also improves its efficiency as far as the number of steps is concerned.
For future studies, the most dynamic field of numerical fractional calculus, as de-
scribed in [22-24], will be taken into consideration, and the new numerical schemes
will be proposed.
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