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Abstract. This research paper is an attempt to solve the unsteady state convection diffusion
one dimension equation. It focuses on the fully implicit hybrid differencing numerical finite
volume technique as well as the fully implicit central differencing numerical finite volume
technique. The simulation of the unsteady state convection diffusion problem with a known
actual solution is also used to validate both the techniques, respectively, the fully implicit
hybrid differencing numerical finite volume technique as well as the fully implicit central
differencing numerical finite volume technique by giving a particular example and solving
it using the appropriate, particular technique. It is observed that the numerical scheme is
an outstanding deal with the exact solution. Numerical results and graphs are presented for
different Peclet numbers.
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1. Introduction

Many physical problems involve the combination of convective and diffusive
processes. They occur in fields where mathematical modelling is important. The ap-
plication of convective as well as diffusive processes is observed across industries
and across countries, such as the engineering sector, the farming sector, biological
research, and the heat transportation sector, in the special case of fluid dynamics
[1,2]. In the field of applied mathematics, problems related to boundary values like
unsteady state convection-diffusion equations, second order partial differential equa-
tions have great significance [3, 4]. In order to solve this equation, a domain must
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contain specific conditions for the unresolved functions satisfying at its boundaries.
The Dirichlet boundary condition is specified at a particular section of the bound-
ary [5]. When the identification of the function of normal derivative is subject to spe-
cific cases, Neumann boundary conditions are those located on parts of the boundary.
In test related problems, the entire boundary condition can be the Dirichlet bound-
ary condition. Consider the one-dimensional unsteady state convection-diffusion flow
equation [4] as

d(pT)  Jd(puT) 0 oT
subject to initial condition, T(x,0) = f(x), x€[0,L], (2)
and boundary condition, 7(0,¢) = go(t), t >0,
T(Lit) = g(t), t>0 3)

Equation (1) is a convective diffusive fluid flow linear partial differential equation.
The variables u and I are the velocity and diffusion coefficient, respectively.

The problem of unsteady state convection-diffusion has more applications in heat
transfer and fluid dynamics [6]. In the field of applied mathematics, apart from
others, fluid dynamics is a scientific discipline of great importance, in which relevant
equations are usually Partial Differential equations. Such an equation has an analytic
solution are only possible for a restricted and limited number of cases [7]. Due to this,
several numerical techniques have been developed for the numerical approximations
of convection-diffusion problems [8,9]. The finite difference approximation method,
the finite element method, as well as finite volume techniques are most widely used
for computational fluid dynamics (CFD) [10, 11]. The previous extensive research
work was carried out by many researchers where numerical approximation of convic-
tion diffusion questions was compared with finite difference as well as finite volume
techniques [12,13]. Research work carried out by Kaya [3] provided insight into de-
veloping a polynomial based differential orthogonal method and some applications
compared results with explicit and implicit finite difference approximation methods.
It also found that differential quadrature gave better results [10]. Computational
related research work for three numerical schemes based on the finite difference
method has been used for third order transfer schemes, fourth order transfer schemes,
as well as non-standard finite difference schemes. Yaghoubi [13] also analyzed high-
order finite difference schemes. Aswin et al. [12] attempted to provide a description
of the relative study of three numerical schemes and concluded that PDQM provides
more accurate time and space results between the three schemes.

The finite volume scheme is one of the most important numerical methods among
others with wide adaptation in numerical methods, which is widely used in numerical
fluid dynamics to solve the convection-diffusion problem [14, 15]. The finite volume
technique specialises in types of heat and fluid flow problems. Considering the wide
adaptation, finite volume can be an appropriate method to determine numerical solu-
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tion diffusion caused by convection [16]. For computational fluid dynamics (CFD)
related research studies, finite volume has universal acceptance, and computational
fluid dynamics (CFD) is a pre-requisite for solving partial differential equations.
The Finite volume scheme provides freedom in terms of its key advantage for per-
forming flow estimation on the element boundary [4,17, 18].

This research article consists of the one dimensional convective diffusion flow
equation under unsteady state conditions with a finite volume technique applied.
In Section 2, a detailed discussion of the formulation and discretized form of the
unsteady state one-dimensional problem for one dimension of the unsteady convec-
tive diffusive flow finite volume method is introduced in this article. The numerical
scheme is discussed in Section 3, and the corresponding initial and boundary condi-
tions have accurate solutions, and it is sufficient to analyze the physical requirements.
For boundary conditions, Section 4 discusses the results of diffusive flow caused by
convection under unsteady conditions, including the diffusive flow diagram caused
by convection. Lastly, in Section 5, this paper concludes.

2. Finite volume method

The finite volume numerical method is representing and evaluating partial dif-
ferential equations in terms of algebraic equations [2]. The finite volume method is
easy to understand and also suitable for appropriate physical interpretation. This is
the biggest advantage of this method. Control volume is an arithmetic area divided
into discrete (non-overlapping) elements. Therefore, each control body is contained
in a node of the computing grid. Finite volume techniques pool the small finite
volume around each node. After applying the Gaussian divergence theorem, we
obtain the surface integral. The flow entering the finite volume is exactly the same
as the flow leaving the adjacent volume. That is why those elements are calculated as
the flow velocity of every final finite volume surface. There is a lot of evidence that
these plans are conservative. Numerical finite volume methods are becoming more
and more popular in the estimated solution of partial differential equations (PDEs).
Readers can find extensive information in [1,4]. The finite volume analysis consists
of three main steps.

Step 1) Grid Generation:

Let us divide the domain into every grid point in this space, which is managemen-
tal by grid precipitation or volume, therefore the control volume limit and physical
limit overlap as presented in Figure 1

Step 2) Discretization:

The blending of governing equations over a control volume is a necessary com-
ponent of the finite volume method. The technique of integrating governed equations
over the control volume yields discretization forms of the simultaneous linear equa-
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Fig. 1. Grid generation

tions at the grid points and then we will have an inclination to discretization, Eq. (1),
after implementing integration over the entire control volume that’s assumed to be
non-deforming with a further integration over a finite time step ("At”)

t+At

// dd+// pqudt
//ax< ax>ddt+ / /dedt

(t+Ar)
/ p(Tp— T)dv + / (PUAT), — (PUAT )t

cv

(t+Ar) o7 o7 (t+Ar)
= / TA— TA— dt+ / SAvdt 4)
dx dx
t t

In equation (4), Face area of control volume is denoted by A, the volume Av is equal
to AAx, S is average source strength, T denoted as temperature distribution at time
and Tp denoted as temperature distribution at time (z + Ar).

To obtain a discretized equation for the one dimensional unsteady state convec-
tion diffusion equation, we have to estimate the term in equation (4) [1,4]. The flux
per unit per area and conductive diffusion at the cell face are necessary to define
variables F as well as D. It is necessary to define variables F' as well as D given

r
by F = pu and D = Sr° The variables F' and D (cell face values) are often writ-
X
cellface

ten as F = (P ) cetpuces Dectiface = < Sk ), and for one dimensional unsteady

cell face
cell face

convection-diffusion flow, cell face values as west (w) and east (e). For finite volume
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numerical techniques, A, = A,, = A, thus we get

(t4Ar)
pr(To—T¢) Av+ [ (RT.—FT,)di
t

(r+Ar) (r+Ar)
= / Do(Tg — Tp) — D\ (Tp — Ty )dt + / SAvdt (5)
t t

To evaluate the convection and diffusion terms in equation (5) over time level ¢ to
(r 4+ Ar), we have to make associated suppositions regarding the variability of Tg, Tp
and Ty with time. The weighting parameter 6 € [0, 1] and I denote the integral of
temperature with time ¢ defined in the following way:

(t+Ar)
Ir = / Tpdt:(eTp—l-(]—e)T}()))Al (6)
t

by using the equation (6) approach we get

P(TP - TIQ)AX+ [G(FeTe _FwTw) + (1 - 9)(F6Te _FWTW)]At = [O(De(TE - TP)
—Dy(Tp —Tw)) + (1 — 0)(D.(Tg — Tp) — D\, (Tp — T ) )| At + SAxAt

For fully implicit finite volume method, consider weighting parameter 6 = 1, then
we get

p - (Tp — TY)Ax + (F,T, — F,T,,)At = [Do(Tg — Tp) — D,,(Tp — Tyy )| At + SAxAt
pAx

(T = T5) = [De(Te = Tp) = Du(Tp = Tw)] = (FTe = FyTw) +SAx - (7)

2.1. Methodology for fully implicit central difference scheme

The numerical approximation central differencing scheme is used to describe
the diffusion terms values which occur on the right hand side of an equation (7) [4],
and it is interpolated linearly to evaluate the left hand side cell face values for the
convection terms in an equation. We can write the cell face values for a uniform grid
of T as

_ TIp+Tg T _ Tw+Tp

2 Y2

In the convective term, substitute the expressions value of 7, and T, into equation
(7). We get

T.
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Ax

%(TP —Tp) = [De(Te — Tp) — Dy (Tp — Ty )]
Tp+T; Ty T —

—(Fe P; L _F, W; P)—l—SAx

This can be rearranged to give the discretized form of the fully implicit central dif-
ferencing numerical scheme is illustrated as follows, [1,4,19]

apTp = awTw+aglg +agT}9 + Sy ®)
From the linear source term SAx = S, + SpTp, we obtained the value of the term S,

and Sp with use of boundary b. The boundary temperature 74 and 7z are denoted as
1p.

F. F,
aE:De—l—?e, aW:Dw+7”, Sp=—(2D%F), S,=—(2D+F)T;,
Ax
ag:%a ap = aw +ag +dp+F, — F,—Sp

2.2. Methodology for fully implicit hybrid scheme

The combination of upwind and central schemes is the hybrid difference
numerical scheme. The second order accurate central difference scheme is used for

F
small Peclet numbers | Pe= D <?2), and the first order convergence

F
upwind scheme is used for large Peclet number <Pe =D > 2>. Fully implicit hy-

brid discretization of differential equation of unsteady convection diffusion one di-
mensional equation [4], which is expressed as the equation (9) [1,4, 19]

apTp = awTy +agTp +adTP +S, 9
where
a, = aW+aE—l—ag—l—Fe—Fw—Sp

From the linear source term SAx = S, + SpTp, we obtained the value of the term S,
and Sp with use of boundary b. The boundary temperature 74 and Tp are denoted as
Tp.

F F.+D
awy = max [FW, (;—i—DW),O}, ag = max [—Fe, (— e; e),O],

Ax
& = ”AT, S,=—(2D=£F), S,=(2D+F)T} (10)
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Step 3) Execution and Implementation:

We have a simultaneous linear algebraic equation after discretization over
every control volume. Generally, simultaneous linear algebraic equations are in tri-
diagonal form, which can be solved using numerical methods like the tri-diagonal
matrix algorithm (TDMA), Gauss-Siedel technique, and successive over-relaxation
(SOR) method [20].

3. Numerical results

Problem: 1 Unsteady state convection diffusion equation Eq. (1) is subject to
initial condition

T(x,0)=f(x) = sin(2mrx), x€[0,1] an
and to boundary condition
T(O,l) = g0 (t) _ 6(74F7r2t)sin(727r ut)7

T(l,t) _ gl(t) _ e(—4l"7'l:zt)sin(27r(l—ut))7 te [O,T] (12)

In this example, consider I' = 0.005, p = 1 and u = 2.5. Analytic solution [12] of
Eq. (1) is subject to initial condition (11) & boundary condition (12) is

T(x,t) — e(—4l"ﬂ:2t)sin(27r(x—ut)) (13)

3.1. Fully implicit central scheme numerical result

For the numerical result of the fully-implicit central differencing scheme, let us
consider the equation (1) is subject to boundary and initial conditions given in (11)
and (12) respectively. Now, coefficients and source terms of the fully implicit
central differencing scheme for equation (1) are in Table 1, where Ar = 0.001 and
Ax = 0.05. After substitution of coefficient numerical values of Table 1 in equation

Table 1. Source term and coefficients for all nodes of central method

Nodes aw ag Sp Su
F
1 0 Def? =-115| —(2D+F)=-2.7 | 2D+ F)T,
2-19 (Dw—i-Q):l.BS (D(,—E):—I.IS 0 0
2 2
F,
20 Dw+7 =1.35 0 —-(2D—-F)=23 | (2D-F)T,
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(8) for different values of time ¢, then for the various nodes we have discretized equa-
tions. These simultaneous linear equations are evaluated in MATLAB [20] by using
the successive-over relaxation (SOR) method, and then temperature profile values for
all nodes (x) are represented in Table 3.

3.2. Fully implicit hybrid scheme numerical result

For the numerical result of the fully implicit hybrid scheme, let us consider
the equation (1) is subject to boundary and initial conditions given in (11) and (12)
respectively. Now, coefficients and source terms of the fully implicit hybrid dif-
ferencing scheme for equation (1) are represented in Table 2, where Ar = 0.001
and Ax = 0.05, After substitution of coefficient numerical values of Table 2 in equa-

Table 2. The source term and coefficients for all nodes of hybrid

Nodes aw ag Sp Su
Fe
1 0 max |—F,, [ D, — 5 ,0l=0| —(2D+F)=-2.7| 2D+F)T,
Fw F(‘
2-19 | max |F,, DM,—O—? ,0/ =2.5 | max |—F,, Dg—j ,00=0 0 0
F,
20 max | F,, Dw‘-«—? ,01 =25 0 —(2D—-F)=-02 | 2D-F)T}

tion (9) for different values of time ¢, then for the various nodes we have discretized
equations. These simultaneous linear equations are evaluated in MATLAB [20] using
the successive-over relaxation (SOR) method, and then temperature profile values
for all nodes (x) are represented in Table 3.

3.3. Norm based error for L,

Using the fully-implicit central and the fully-implicit hybrid numerical schemes,
the numerical solution of the convective-diffusive heat flow equation in the unsteady
state is obtained. According to the defined rules of norm L, and L., the accuracy of
the proposed scheme for error measurement of numerical schemes is high.

1
L g [ umericat) _ gesaa)]?|
L — - [T numerical) __ (exact ]
2 Ax l:Zl i i

L —  max { }T.(numerical) o T(exact)
00 - 1 1

/1 §i§N} (14)

The MATLAB programming simulated results of the given problem: 1 can be
found in Tables 3 and 4 and Figures 2-9 under the initial and boundary conditions.



A research study on unsteady state convection diffusion flow with adoption of finite volume technique

73

Table 3. Numerical results of the convection diffusion unsteady state equation

Nodes (x) | time (t) | Central Hybrid Analytical Error(Hybrid)
0.004 0.655719046 0.661261289 0.66078992 0.000713341
0.125 0.006 0.62975134 0.637423385 0.636669502 0.001184104
0.008 0.603701626 0.613005535 0.611939953 0.001741317
0.01 0.577618809 0.588030761 0.586626155 0.002394379
0.004 0.907927903 0.916183577 0.917030282 0.000923312
0.325 0.006 0.914942698 0.927443186 0.928675955 0.001327447
0.008 0.920997355 0.937803734 0.939396162 0.001695161
0.01 0.92609594 0.947256467 0.949181058 0.002027633
0.004 -0.966217972 | —0.974914905 | —-0.975146513 | 0.000237511
0725 0.006 —0.954236006 | —0.967142016 | -0.967436696 | 0.000304599
0.008 —0.941449385 | —0.958456158 | —0.958778447 | 0.000336146
0.01 —0.927878735 | —0.948866769 | —0.949181058 | 0.000331115
0.004 —0.502840222 | -0.507511154 | -0.508639651 | 0.002218658
0.925 0.006 —0.526172296 | —0.533520488 | —0.535192563 | 0.003124248
0.008 —0.548755316 | —0.559002413 | —-0.561196472 | 0.00390961
0.01 —0.570574987 | —0.583937656 | -0.586626155 | 0.004582985

Table 4. At different time level norm based errors for problem:1 with Az = 0.001

Hybrid Scheme Central Scheme

Time | L. Norm Ly Norm L Norm L Norm

0.001 | 0.000298862 | 0.000202731 | 0.006741794 | 0.002267787
0.002 | 0.000621497 | 0.000405627 | 0.013159978 | 0.004481622
0.003 | 0.000968218 | 0.000608858 | 0.019269456 | 0.006646206
0.004 | 0.001339323 | 0.00081259 0.025084361 | 0.008765737
0.005 | 0.001735094 | 0.001016991 | 0.0306181 0.010843963
0.006 | 0.002155793 | 0.001222225 | 0.035883389 | 0.012884228
0.007 | 0.002601667 | 0.001428457 | 0.04089229 0.014889517
0.008 | 0.003072945 | 0.00163585 0.045656243 | 0.016862491
0.009 | 0.003569835 | 0.001844564 | 0.050186101 | 0.018805523
0.01 0.00409253 0.002054758 | 0.054492159 | 0.020720729

It was found that the fully implicit hybrid numerical scheme gives better results than

the fully implicit central numerical scheme shown in Table 3.

4. Results and discussion

To analyse the approximate value of the finite-volume of the convective diffusion

flow in an unsteady state, observe the temperature profile at each node point in Fig-

ures 2-9. In Figures 2 and 3 show the stable plot of the fully implicit central difference

scheme and fully implicit hybrid difference scheme plot for Peclet number, Pe = 25

of one dimensional convection and diffusion equation (1) subject to initial condition

(11) and boundary condition (12) for two different time slots of ¢+ = 0.004,0.008.
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Figures 4 and 5 are two kinds of norm L, and L. errors that behave in completely
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different ways. This estimation of errors tells us the convergence order of the numer-
ical scheme. Here, in this research paper, the tendency to determine that the fully
implicit hybrid numerical scheme provides higher convergence as compared to the
fully implicit central numerical scheme, and Figures 6 and 7 represented the temper-
ature profile for Peclet number, Pe = 500 of both numerical scheme for t = 0.01. This
Peclet number was achieved by taking domain length L =5, node N = 100, velocity
u = 50 and density p = 1 subject to initial condition (11) & boundary condition (12).

Figures 8 and 9 represented the temperature profile for Peclet number, Pe = 2000
of both numerical schemes for t = 0.01. This Peclet number is achieved by taking
domain length L = 10, node N = 200, velocity u = 50 and density p = 1 subject to
initial condition (11) and boundary condition (12).
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5. Conclusion

The analysis of obtained results confirms the good compatibility of the two tech-
niques, which proves their correctness. Changes in temperature distribution due to
time are clearly visible. A fully implicit central difference scheme and a fully implicit
hybrid difference scheme for the unsteady state convection-diffusion one dimensional
equation have been presented. For the test examples studied, it has been found that
the fully implicit hybrid difference scheme gives better point-wise solutions than the
fully implicit central difference scheme. The hybrid difference scheme derives bene-
fits from the favorable properties of the central and upwind schemes. It is switched
to upwind differencing when central differencing produces inaccurate results at high
Peclet number (Pe). The coefficients are always positive because the scheme is fully
conservative and it is unconditionally bounded. Using the upwind formulation
for large values of Peclet number (Pe), it satisfies the transportive requirements.

10
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The scheme produces physically realistic solutions and is unconditionally stable.
Built techniques may be modified in a simple way to solve two-dimensional
and three-dimensional unsteady state convection-diffusion problems. In this case,
the analytical method will be limited to simple geometry, but in the case of a nu-
merical model, such constraints do not exist.
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