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Abstract. The numerical study of two-dimensional laminar thermo-diffusion natural con-
vection in an exponentially heated and concentrated square enclosure of unit length in the
presence of a uniform horizontal magnetic field is presented in this paper. The left and
right vertical walls are assumed to have higher and lower temperatures and concentrations,
respectively, and are governed by exponential functions, whereas the horizontal walls are
assumed to be adiabatic and non-diffusive. The mathematical formulation of heat and mass
functions has been completed, and heat and mass line contours have been drawn based on
these functions to investigate the behavior of heat and mass in the cavity. The flow governing
equations were solved using a finite difference method in conjunction with the Successive
Over-Relaxation (SOR) technique and then converted to a vorticity-stream function form.
A detailed comparison of isotherms with heatlines and isosolutes with masslines has been
performed. Furthermore, the reduction for lower Rayleigh numbers Ra surpassing the
reduction for higher values of Ra. The maximum reduction in overall heat and mass transfer
has been observed for higher Hartmann (Ha = 8).
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Nomenclature

English letters

βS∗ solute expansion coefficient

βT ∗ thermal expansion coefficient

(U,V ) dimensionless velocity components

(u,v) dimensional velocity components[
ms−1

]

(X ,Y ) dimensionless coordinates

(x,y) dimensional coordinates [m]

Nu Nusselt number

Sh Sherwood number

g gravitational acceleration
[
ms−2

]

B magnetic field strength

D mass diffusivity
[
m2s−1

]

H dimensionless heat function
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h dimensional heat function

J heat flux

L enclosure side

M dimensionless mass function

m dimensional mass function

N buoyancy ratio

P dimensionless pressure

p dimesional pressure
[
Nm−2

]

S dimensionless solute

S∗ dimensional solute
[
Kgm−3

]

T dimensionless temperature

T ∗ dimensional temperature [K]

Greek symbols

α thermal diffusivity
[
m2s−1

]

µ dynamic viscosity
[
Kgm−1s−1

]

ν kinematic viscosity
[
m2s−1

]

Ω dimensionless vorticity

ω dimensional vorticity

ρ fluid density
[
Kgm−3

]

σ electrical conductivity
[
Wm−1K−1

]

k thermal conductivity
[
Wm−1K−1

]

Subscripts
avg average

min maximum

min minimum

h higher

l lower

1. Introduction

The process of thermo-diffusion natural convection is governed by the combined
temperature and concentration gradients. The most recent works [1–4] show that
isotherms, isoconcentration, and streamlines are frequently used to investigate
the thermo-diffusion natural convection phenomenon. The streamlines visualization
technique effectively depicts fluid flow. The isotherms and isoconcentrations are used
to visualize the heat and mass flows within the domain, but they cannot represent
the ‘heat flow’ and ‘mass flow’ because the isotherms and isoconcentrations only
indicate the spatial distribution of temperature and concentration. Understanding the
heat and mass flow during thermo-diffusion convection requires a visualization tool
similar to streamlines. As a result, we use the heat and mass lines techniques to
fully visualize ‘heat flow’ and ‘mass flow,’ respectively. Only a few authors have
used heat and mass lines techniques to fully visualize heat and mass flows in cav-
ities. We’ve listed a few of them here where the authors used the aforementioned
visualization techniques. The visualization tools for heat and mass lines were used
in [5–7]. Some very important contributions have been done by Prof. Sohail A. Khan
and his group members in the numerical investigation of heat transfer with entropy
generation minimization [8–11] in various types of nanofluids in numerous types of
geometries. Furthermore, they have also investigated double-diffusion in Sisko fluid
flow with variable properties [12], heat transfer and entropy analysis using liquid
hydrogen based nanoliquid [13] and mixed convection utilizing CNTs [14,15] as well
as Ree-Eyring nanofluid flow with entropy generation analysis [16].
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2. Problem formulation

The current study’s problem formulation is divided into two parts: the physical
model is explained in the first part, and the mathematical formulation is presented in
the second part.

2.1. Physical model

The current work considers steady, laminar, and incompressible flow in a square
enclosure, as shown in Figure 1. Water, a Newtonian fluid, has been considered as
the working fluid (Pr = 6.2). The left wall is kept at a higher temperature and so-
lute concentration, while the right wall is kept at a lower temperature and solute
concentration. Along the horizontal walls, heat and mass transmissions are adia-
batic. No-slip velocity boundary conditions, i.e., u = v = 0, apply to all solid walls.
A uniform magnetic field of strength B is applied in the x-direction.
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Fig. 1. The physical model of the problem under consideration

2.2. Mathematical formulation

The current study’s mathematical formulation was derived from a physical model
that included flow controlling equations in dimensional and non-dimensional forms,
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as well as boundary conditions. In addition, the dimensional and non-dimensional
forms of steam, heat, and mass functions are addressed. The flow governing equa-
tions which are continuity, momentum, energy, and solute transfer equations in di-
mensional form are as follows [7]:

∂u
∂x

+
∂v
∂y

= 0, (1)

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
=−∂ p

∂x
+µ

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (2)

ρ

(
u

∂v
∂x

+ v
∂v
∂y

)
=−∂ p

∂y
+µ

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
+(ρβT ∗)g(T ∗−T ∗

l )

+(ρβS∗)g(S∗−S∗l )−σB2v,
(3)

(ρcp)

(
u

∂T ∗

∂x
+ v

∂T ∗

∂y

)
= k

(
∂ 2T ∗

∂x2 +
∂ 2T ∗

∂y2

)
, (4)

u
∂S∗

∂x
+ v

∂S∗

∂y
= D

(
∂ 2S∗

∂x2 +
∂ 2S∗

∂y2

)
. (5)

Using stream function
(

u =
∂ψ

∂y
,v =−∂ψ

∂x

)
, vorticity

(
ω =

∂v
∂x

− ∂u
∂y

)
trans-

formation alone with the following non-dimensional parameters

X =
x
L
, Y =

y
L
, U =

uL
α f

, V =
vL
α
, Ψ =

ψ

α
, P =

pL2

ρ α2

Pr =
ν

α
, Le =

α

D
, Ω =

ωL2

α
, T =

T ∗−T ∗
l

T ∗
h −T ∗

l
, S =

S∗−S∗l
S∗h −S∗l

Ra =
gβT ∗

(
T ∗

h −T ∗
l

)
L3

να
, N =

(ρβS∗)
(
S∗h −S∗l

)

(ρβT ∗)
(
T ∗

h −T ∗
l

) , Ha = BL
√

σ

µ
,

(6)

the non-dimensional form of Eqs. (1) to (5) in stream function, vorticity, temperature,
and solute equations are as follows:

∂ 2Ψ

∂X2 +
∂ 2Ψ

∂Y 2 =−Ω (7)

U
∂Ω

∂X
+V

∂Ω

∂Y
= Pr

(
∂ 2Ω

∂X2 +
∂ 2Ω

∂Y 2

)
+RaPr

(
∂T
∂X

+N
∂S
∂X

)
−Ha2 Pr

∂V
∂X

, (8)
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U
∂T
∂X

+V
∂T
∂Y

=
∂ 2T
∂X2 +

∂ 2T
∂Y 2 , (9)

U
∂S
∂X

+V
∂S
∂Y

=
1

Le

(
∂ 2S
∂X2 +

∂ 2S
∂Y 2

)
, (10)

The following are the non-dimensional boundary conditions for the non-dimensional
flow governing Eqs. (7) to (10) [17, 18]:

Ψ = 0, Ω =−∂ 2Ψ

∂Y 2 ,
∂T
∂Y

=
∂S
∂Y

= 0, along horizontal walls,

Ψ = 0, Ω =−∂ 2Ψ

∂X2 , T = S = 0, along the right wall,

Ψ = 0, Ω =−∂ 2Ψ

∂X2 , T = S = exp(Y ), along the left wall.

(11)

2.2.1. Stream function (Streamlines)

The non-dimensional stream function (Ψ) that governs the flow structure is
defined as follows:

U =
∂Ψ

∂Y
and V =−∂Ψ

∂X
(12)

After manipulation, Eq. (12) can be rewritten as follows:

∂ 2Ψ

∂X2 +
∂ 2Ψ

∂Y 2 =
∂U
∂Y

− ∂V
∂X

. (13)

Equation (13) is Poisson’s equation for the non-dimensional stream function Ψ with

source term
∂U
∂Y

− ∂V
∂X

. The solution to Eq. (13) yields the non-dimensional stream

function, Ψ(X ,Y ), and sketching isolines of this yields streamlines inside the
enclosure.

2.2.2. Heat function (Heatlines)

The total heat flux vector,
−→
J =

(
Jx
−→
i + Jy

−→
j
)

, containing the diffusion and
convection transport, in x and y directions can be written as

Jx = (ρcp)u(T ∗−T ∗
l )− k

∂T ∗

∂x
, Jy = (ρcp)v(T ∗−T ∗

l )− k
∂T ∗

∂y
(14)
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∂Jx

∂x
+

∂Jy

∂y
= (ρcp)

(
∂uT ∗

∂x
+

∂vT ∗

∂y

)
− k

(
∂ 2T∗
∂x2 +

∂ 2T∗
∂y2

)
= 0 (15)

The dimensional heat function can be expressed in a differential form by treating
h as a continuous scalar function [19, 20]:

−∂h
∂x

= Jy,
∂h
∂y

= Jx (16)

Therefore, from Eq. (14) we have

−∂h
∂x

= (ρcp)v(T ∗−T ∗
l )− k

∂T ∗

∂y
(17)

∂h
∂y

= (ρcp)u(T ∗−T ∗
l )− k

∂T ∗

∂x
(18)

Using the non-dimensional parameters described in Eq. (6), we may express Eqs. (17)
and (18) in the dimensionless form as follows:

−∂H
∂X

=V T − ∂T
∂Y

(19)

∂H
∂Y

=UT − ∂T
∂X

(20)

where H stands for the dimensionless heat function and is written as

H =
h

k
(
T ∗

h −T ∗
l

) (21)

The manipulation of Eqs. (19) and (20) yields the following partial differential
equation for the heat function.

∂ 2H
∂X2 +

∂ 2H
∂Y 2 =

∂ (UT )
∂Y

− ∂ (V T )
∂X

(22)

By solving either Eq. (19), Eq. (20), or Eq. (22), we can obtain the dimensionless
heat function H in the inner region of the rectangular enclosure under consideration.
Heatlines are created by creating isolines with the heat function.

The following are the corresponding boundary conditions for the heat function H:

for, X = 0 and X = 1,
∂H
∂X

= 0,

for, Y = 0, H = 0,

for, Y = 1, H = Nuavg,

(23)



Thermo-diffusion MHD convection in enclosure using heat and mass lines visualization techniques 69

where Nuavg is given by

Nuavg =
∫ 1

0
Nu dY (24)

and

Nu =− ∂T
∂X

∣∣∣∣
X=0

. (25)

2.2.3. Mass function (Masslines)

In the dimensional form, the mass function [20, 21] is given as m and defined as

−∂m
∂x

= ρv(S∗−S∗l )−ρD
∂S∗

∂y
(26)

∂m
∂y

= ρu(S∗−S∗l )−ρD
∂S∗

∂x
(27)

Using the non-dimensional parameters described in Eq. (6), we may express Eqs. (26)
and (27) in the dimensionless form as follows:

−∂M
∂X

=V S− 1
Le

∂S
∂Y

(28)

∂M
∂Y

=US− 1
Le

∂S
∂X

(29)

where M is the non-dimensional mass function, which has the following definition:

M =
m

LeρD
(
S∗h −S∗l

) (30)

The following partial differential equation for the mass function is obtained by ma-
nipulating Eqs. (28) and (29).

∂ 2M
∂X2 +

∂ 2M
∂Y 2 =

∂ (US)
∂Y

− ∂ (V S)
∂X

(31)

By solving either Eq. (28), Eq. (29), or Eq. (31), we can obtain the dimensionless
mass function M in the inner region of the rectangular enclosure under consideration.
Masslines are created by drawing isolines of the mass function.
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The following are the equivalent boundary conditions for the mass function M:

for, X = 0 and X = 1,
∂M
∂X

= 0,

for, Y = 0, M = 0,

for, Y = 1, M = Shavg,

(32)

where Shavg is given by

Shavg =
∫ 1

0
Sh dY (33)

and

Sh =− ∂S
∂X

∣∣∣∣
X=0

. (34)

3. Solution methodology

The flow governing equations are solved using the procedures below:

Step 1: The finite difference method is used to discretize the governing Eqs. (7)
to (10).

Step 2: Iteratively solve the collection of discretized governing equations.

Step 3: To compute the vorticity field in the computational domain, the vorticity
equation Eq. (8) is solved first.

Step 4: The stream function equation Eq. (7) is then solved using the Successive
Over-Relaxation (SOR) method, and the velocity values are obtained after we
have the stream function field.

Step 5: The set of discretized equations for energy Eq. (9) and solute Eq. (10) trans-
ports in the computational domain are solved at the same time and utilize the
new velocity values.

Step 6: The algebraic equations obtained following the discretization procedure are
solved using in-house computer code written in FORTRAN-95.

Step 7: All dependent variables are assumed to be converged during the calculations
if, and only if,

∣∣∣χn+1
i, j −χ

n
i, j

∣∣∣≤ 10−7, (35)

where χ = (U,V,Ψ,Ω,T,S), and (i, j) is the computation node point, and n is
the iteration number.
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4. Results and discussion

Figures 2 and 3 represent the effect of Rayleigh (Ra) and Hartmann (Ha) num-
bers on isotherms and heatlines. The top rows of both Figures 2 and 3 illustrate the
isotherms for various Hartmann numbers (0 ≤ Ha ≤ 8). Even a minor increase in Ha
causes a reduction in the temperature gradients on the vertical walls, resulting in the
convection process dominated by conduction. The physics behind this is that electro-
magnetic force dominates the buoyancy force. It can also be noted that temperature
gradients along the vertical walls rise as Ra strengthens from 5×103 to 5×104. The
reason behind this is that buoyancy force dominates viscous force, therefore the con-
vection process enhances subsequently. It can also be observed that isotherms only
represent spatial distribution of temperature along a particular isotherm line. There-
fore, isotherms are unable to visualize the heat flow inside the enclosure and hence
heatlines are required to do the task. The bottom rows of both Figures 2 and 3 illus-
trate the heatlines for various Hartmann numbers (0 ≤ Ha ≤ 8). Each heatline con-
tour has two types of lines: one of these are starting from a higher temperature wall
and reaches at lower temperature wall and has positive intensity and responsible for
direct heat transfer whereas other heatlines form a loop and have negative intensity
and are responsible for thermal mixing. In this way heatlines help in completing the
visualization of heat flow. Futhermore, the direct heat transfer and thermal mixing
are denoted by Hmax and Hmin. From Figures 2 and 3 and Table 1, as Ra increases
from 5×103 to 5×104, both Hmax and Hmin enhance. Subsequently, direct heat trans-
fer and thermal mixing strengthen and hence significantly enhance in the convection
process. However, magnitude of Hmax dominates the magnitude Hmin and hence ther-
mal mixing is dominated by direct heat transfer. Furthermore, as Ha increases from
0 to 8, both the thermal mixing and direct heat transfer falls, but this fall is more for a
lower Rayleigh number (Ra) in comparison to a higher Ra, and hence magnetic field
is more effective for a lower Ra.

Ha = 0

(a)

Ha = 2

(b)

Ha = 4

(c)

Ha = 8

(d)

(e) (f) (g) (h)

Fig. 2. Comparison of isotherms (T ) (top row) and heatlines (H) (bottom row) for various Hartmann
numbers (Ha) at Ra = 5×103, Le = 1, and N = 1
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Ha = 0

(a)

Ha = 2

(b)

Ha = 4

(c)

Ha = 8

(d)

(e) (f) (g) (h)

Fig. 3. Comparison of isotherms (T ) (top row) and heatlines (H) (bottom row) for various Hartmann
numbers (Ha) at Ra = 5×104, Le = 1, and N = 1

Table 1. Comparison of thermal mixing and direct heat transfer

Ra = 5×103

Ha Hmin % change in Hmin Hmax % change in Hmax

0 −2.477 4.955
2 −2.437 1.61 4.927 0.57
4 −2.325 4.60 4.845 1.66
8 −1.975 15.05 4.555 5.99

Ra = 5×104

0 −4.454 10.063
2 −4.420 0.76 10.043 0.20
4 −4.325 2.15 9.983 0.59
8 −3.994 7.65 9.756 2.27

Figures 4 and 5 represent the effect of Rayleigh (Ra) and Hartmann (Ha) numbers
on isoconcentrations and masslines. The top rows of both Figures 4 and 5 illustrate
the isoconcentrations for various Hartmann numbers (0 ≤ Ha ≤ 8). Even a minor
increase in Ha causes a reduction in the concentration gradients on the vertical walls,
resulting in the convection process dominated by conduction. The physics behind this
is that electromagnetic force dominates the concentration buoyancy force. It can also
be noted that concentration gradients along the vertical walls rise as Ra is strength-
ened from 5× 103 to 5× 104. The reason behind this is that concentration buoy-
ancy force dominates viscous force, therefore convection process enhances subse-
quently. It can also be observed that isoconcentrations only represent spatial distribu-
tion of concentration along a particular isoconcentration line. Therefore, isoconcen-
trations are unable to visualize the mass flow inside the enclosure and hence masslines
are required to do the task. The bottom rows of both Figures 4 and 5 illustrate
the masslines for various Hartmann numbers (0 ≤ Ha ≤ 8).
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Ha = 0

(a)

Ha = 2

(b)

Ha = 4

(c)

Ha = 8

(d)

(e) (f) (g) (h)

Fig. 4. Comparison of isoconcentration (S) (top row) and masslines (M) (bottom row) for various
Hartmann numbers (Ha) at Ra = 5×103, Le = 1, and N = 1

Ha = 0

(a)

Ha = 2

(b)

Ha = 4

(c)

Ha = 8

(d)

(e) (f) (g) (h)

Fig. 5. Comparison of isoconcentration (S) (top row) and masslines (M) (bottom row) for various
Hartmann numbers (Ha) at Ra = 5×104, Le = 1, and N = 1

Each massline contour has two types of lines: one of these are starting from higher
concentration wall and reaches at a lower concentration wall and has positive inten-
sity and responsible for direct mass transfer whereas other masslines form a loop and
have negative intensity and are responsible for solute mixing. In this way masslines
help in the complete visualizing of mass flow. Furthermore, the direct mass trans-
fer and solute mixing are denoted by Mmax and Mmin. From Figures 4 and 5, as Ra
increases from 5×103 to 5×104, both Mmax and Mmin enhance. Subsequently, direct
mass transfer and solute mixing strengthen and hence significantly enhance in con-
vection process. But magnitude of Mmax dominates the magnitude Mmin and hence
solute mixing is dominated by direct mass transfer. Furthermore, as Ha increases
from 0 to 8, both the solute mixing and direct mass transfer falls but this fall is more
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for lower Rayleigh number (Ra) in comparison to higher Ra and hence magnetic
field is more effective for lower Ra.

Table 2. Comparison of solutal mixing and direct solute transfer

Ra = 5×103

Ha Mmin % change in Mmin Mmax % change in Mmax

0 −2.481 4.946
2 −2.441 1.61 4.918 0.57
4 −2.329 4.59 4.836 1.67
8 −1.979 15.03 4.547 5.98

Ra = 5×104

0 −4.478 10.012
2 −4.445 0.74 9.992 0.20
4 −4.349 2.16 9.932 0.59
8 −4.018 7.61 9.707 2.27

4.1. Overall heat and mass transfer

The average Nusselt and average Sherwood numbers are used to represent overall
heat and mass transfers, and are denoted by Nuavg and Shavg, respectively. Table 3
compares overall heat and mass transfer for different Rayleigh (Ra) and Hartmann
(Ha) numbers, respectively. It can be seen that when Ra increases from 5× 103 to
5× 104, the overall heat and mass transfer doubles, or there is a 100% increment.
It is also worth noting that the Hartmann number (Ha) is more effective for lower
Ra than for higher Ra. For higher Hartmann (Ha = 8), there is a maximum reduction
in overall heat and mass transfer.

Table 3. Comparison of overall heat and mass transfer

Ra = 5×103

Ha Nuavg % change in Nuavg Shavg % change in Shavg

0 4.962 4.953
2 4.934 0.57 4.925 0.57
4 4.852 1.66 4.843 1.66
8 4.562 5.99 4.553 5.99

Ra = 5×104

0 10.077 10.026
2 10.057 0.20 10.006 0.20
4 9.997 0.59 9.947 0.59
8 9.770 2.28 9.721 2.27
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5. Concluding remarks

The current research focuses on employing heat and mass lines approaches to
visualize the heat and mass flows in MHD thermo-diffusion convection in an enclo-
sure. Heat and mass flows inside the enclosure are best understood using heat and
mass lines visualization techniques over isotherms and isoconcentrations. Overall,
because of the dominance of buoyant force over viscous force as the Rayleigh number
rises, heat and mass transmission from higher temperature and concentration walls
to the fluid improves. Even a minor increase in the Hartmann number Ha results in
a significant reduction in overall heat and mass fluxes. Furthermore, the reduction for
smaller Rayleigh numbers Ra outweighs the reduction for larger Rayleigh numbers
Ra. The largest reduction in overall heat and mass transport has been observed for
greater Hartmann (Ha = 8). As a result, we can control heat and mass transfer by
applying proper magnetic field strength.
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