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the physical phenomenon of diffusion in media with moving membranes.

MSC 2010: 60J60, 35K20
Keywords: diffusion processes with membranes, two-parapeter Feller semigroup, nonlocal
boundary condition, method of potential theory

1. Introduction

The paper is devoted to the construction, using analytical methods, of the
two-parameter Feller semigroup associated with a certain inhomogeneous Markov
process on the bounded interval of the real line. This process occurs after pasting to-
gether, at some point of the interval, two diffusion processes given by their generating
differential operators. It is assumed that the position on the real line of the boundary
points of the considered domains is determined by given functions which, as well as
the process itself, depend on the time variable. Some variants of the general bound-
ary condition or conjugation condition of Feller-Wentzell’s type for one-dimensional
diffusion processes are supposed to be given in these points (see [1, 2]). This type of
Markov process can serve as a one-dimensional mathematical model of the physical
phenomenon of diffusion in media with membranes which are located at some points
(cf. [3–5]). In our case, such points are the boundaries of the given interval of the line
as well as the point of pasting together two given diffusion processes. We say that
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the membranes placed at these points are moving because their position on the line
changes and depends on the time variable.

In the paper we study in detail the case, when the boundary conditions on the outer
boundaries of two domains in which the diffusion processes are given, correspond to
the property of total reflection of a diffusion process. Furthermore, the conjugation
condition defined on the common boundary of these domains corresponds to a partial
reflection of a process in combination with the possibility of its leaving the boundary
by jumps.

The investigation of the problem of construction of the two-parameter Feller
semigroup associated with the needed Markov process leads to the nonlocal Feller-
-Wentzell initial-boundary value problem for the one-dimensional (with respect to
the space variable) parabolic backward Kolmogorov equation with discontinuous
coefficients. The problem, formulated in such a way, is considered for the first time
in bounded curvilinear domains with non-smooth boundaries (cf. [3–6]). The classi-
cal solvability of this problem in the space of continuous functions is established here
under some assumptions on its output data by the boundary integral equations method
with the use of the fundamental solutions of the uniformly parabolic equations and
the associated potentials.

Note that earlier in [4], a similar problem was considered for the case of non-
moving membranes, and in [5] it was studied under the assumption that domains,
where the diffusion processes are considered, are half-bounded intervals of the real
line. We also mention the paper [7] where the approach to investigation of parabolic
conjugation problems that we developed was applied for the first time to the study of
the topical problem of the high-energy astrophysics concerned with solving a certain
non-stationary kinetic equation that describes the acceleration of charged particles
in the vicinity of strong shock waves. As for the application of other approaches to
the construction of diffusion processes in domains of a finite-dimensional Euclidean
space, given the diffusion coefficients and boundary conditions, they are reflected,
in particular, in [8–10].

2. Main assumptions and problem setting

Consider in the strip

Π = [0,T ]×R= {(s,x) ∈ R2 : 0 ≤ s ≤ T ; −∞ < x < ∞}

(T > 0 is fixed) two parabolic operators

∂

∂ s
+L(i)

s ≡ ∂

∂ s
+

1
2

bi(s,x)
∂ 2

∂x2 +ai(s,x)
∂

∂x
, i = 1,2. (1)

Assume that the coefficients of the operators L(i)
s are real-valued functions which

satisfy the following conditions:
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1) there exist positive constants C1 and C2 such that

C1 ≤ bi(s,x)≤C2, (s,x) ∈ Π, i = 1,2;

2) in Π, the functions bi(s,x),ai(s,x), i = 1,2, are bounded and continuous and
belong to the Hölder class H

λ

2 ,λ (Π), 0 < λ < 1 (for the definition of Hölder
classes, see [11, Ch. I, §1]).

In the strip Π, we consider two bounded domains:

D(i)
t = {(s,x) : 0 ≤ s < t ≤ T, gi(s)< x < gi+1(s)}, i = 1,2,

where g j(s), s ∈ [0,T ], j = 1,2,3, are given functions which satisfies the condition

3) g j ∈ H
1+λ

2 ([0,T ]), j = 1,2,3(λ is the constant in the condition 2).

We will use also the following notations:

I1s = {x : g1(s)≤ x < g2(s)}= [g1(s),g2(s)),

I2s = {x : g2(s)< x ≤ g3(s)}= (g2(s),g3(s)],

Iδ
is = {y : y ∈ Iis, |y−g2(s)|< δ}, δ > 0, i = 1,2,

C j = {(s,g j(s)) : s ∈ [0,T ]}, j = 1,2,3,

Is = I1s ∪ I2s, Iδ
s = Iδ

1s ∪ Iδ
2s, Dt = D(1)

t ∪D(2)
t ,

∆
x̃
x f (·,x)≡ f (·,x)− f (·, x̃), ∆

t̃
t f (t, ·)≡ f (t, ·)− f (̃t, ·),

G denotes the closure of the set G and Cb(R) is the space of bounded continuous
functions on R with the norm ∥ϕ∥= sup |ϕ(x)|. In what follows C and c are various
positive constants independent of (s,x), which will be used without specifying their
values. Other notations will be explained immediately after their appearance in the
text of the paper.

Operators (1) have the fundamental solutions (see [3, Ch. II, §1], [11, Ch. IV,
§11], [12, Ch. I, §2])

Γi(s,x, t,y) = Γi0(s,x, t,y)+Γi1(s,x, t,y), i = 1,2, 0 ≤ s < t ≤ T, x,y ∈ R, (2)

where

Γi0(s,x, t,y) = [2πbi(t,y)(t − s)]−
1
2 exp

{
− (y− x)2

2bi(t,y)(t − s)

}
,

Γi1(s,x, t,y) =
t∫

s

dτ

∫
R

Γi0(s,x,τ,z)Zi(τ,z, t,y)dz
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Zi can be found from the condition that the function Γi in (2) satisfies in (s,x)

the equation
∂u
∂ s

+L(i)
s u = 0) and the estimates

|Dr
sD

p
x Γi(s,x, t,y)| ≤C(t − s)−

1+2r+p
2 exp

{
−c

(y− x)2

t − s

}
, (3)

|Dr
sD

p
x Γi1(s,x, t,y)| ≤C(t − s)−

1+2r+p−λ

2 exp
{
−c

(y− x)2

t − s

}
, (4)

hold, where λ is the constant in the condition 2. Here, r and p are the nonnegative
integers for which 2r+ p ≤ 2, Dr

s and Dp
x are the partial derivatives with respect to s

of order r and with respect to x of order p, respectively. Note that for the function Γi0
in (2), the inequality (3) holds when r and p are any nonnegative integers.

In the domain Dt (t ∈ (0,T ]), we set the nonlocal parabolic conjugation problem of
the Feller-Wentzell’s type with respect to the unknown function u(s,x, t)((s,x)∈ Dt):

∂u
∂ s

+L(i)
s u = 0, (s,x) ∈ D(i)

t , i = 1,2, (5)

lim
s↑t

u(s,x, t) = ϕ(x), x ∈ It , (6)

∂u
∂x

(s,g2i−1(s), t) = 0, 0 ≤ s < t ≤ T, i = 1,2, (7)

u(s,g2(s)−0, t) = u(s,g2(s)+0, t), 0 ≤ s ≤ t ≤ T, (8)

q1(s)
∂u
∂x

(s,g2(s)−0, t)−q2(s)
∂u
∂x

(s,g2(s)+0, t)

+
∫
Is

[u(s,g2(s), t)−u(s,y, t)]µ(s,dy) = 0, 0 ≤ s < t ≤ T,
(9)

where ϕ, q1, q2 are the given functions and µ is the given measure.
Assume that the functions ϕ, q1, q2 and the measure µ satisfy the following con-

ditions:

4) the function ϕ is defined on R and belongs to the space Cb(R);

5) the functions q1, q2 are nonnegative, continuous and satisfy the inequality

q1(s)+q2(s)> 0, s ∈ [0,T ]; (10)

6) µ(s, ·) is the nonnegative measure on Is such that for any δ > 0 and any bounded
continuous function f on Iis, i = 1,2, the integrals

F(i)
f (s) =

∫
Iδ
is

(y−g2(s)) f (y)µ(s,dy), G(i)
f (s) =

∫
Iis\Iδ

is

f (y)µ(s,dy), i = 1,2,

are continuous on [0,T ] as functions of s.
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The purposes of the following sections are to establish by the potential method
the classical solvability of the problem (5)-(9) and to prove that the family of linear
operators (which act in Cb(R)), defined by means of the solution of this problem,
forms the two-parameter Feller semigroup associated with some inhomogeneous
Markov process on Is.

3. Solving the nonlocal parabolic conjugation problem

In this section we solve by the method of potential theory the initial boundary-
value problem (5)-(9).

Theorem 1 Let the operators L(i)
s , i = 1,2, satisfy the conditions 1, 2 and the func-

tions g j(s), j = 1,2,3, belong to the Hölder class H
1+λ

2 ([0,T ]). If ϕ is bounded con-
tinuous on R, qi, i = 1,2, and µ , respectively, satisfy the conditions 5 and 6, then
there exists a unique classical solution of the problem (5)-(9) which is continuous
in the closed domain Dt . 2

PROOF We first prove the existence of a solution u(s,x, t). We find it in the form

u(s,x, t) = ui(s,x, t) = ui0(s,x, t)+ui1(s,x, t), (s,x) ∈ D(i)
t , i = 1,2, (11)

where ui0(s,x, t)(0 ≤ s < t ≤ T, x ∈ R) are the Poisson potentials

ui0(s,x, t) =
∫
R

Γi(s,x, t,y)ϕ(y)dy, i = 1,2, (12)

and ui1(s,x, t)(0 ≤ s < t ≤ T, x ∈ R) express as a sum of simple-layer potentials

ui1(s,x, t) =
1

∑
j=0

t∫
s

Γi(s,x,τ,gi+ j(τ))V2i−1+ j(τ, t)dτ, i = 1,2, (13)

with the unknown densities Vk, k = 1,2,3,4, to be found.
Suppose a priori that Vk(τ, t) are continuous for 0 ≤ τ < t ≤ T and bounded by

C(t − τ)−µ , where 0 ≤ µ < 1. These functions will be defined from the conditions
(7)-(9). Consider first the boundary conditions (7). From the well-known theorem
on the jump of the conormal derivative of a parabolic simple-layer potential (see [12,
Ch. V, §1], [5, Formula (1.22)]), it is seen directly that these conditions lead to the
equalities

V3i−2(s, t) = Ψ3i−2(s, t)+
1

∑
j=0

t∫
s

Ki j(s,τ)V2i+ j−1(τ, t)dτ, i = 1,2, (14)
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where

Ψ3i−2(s, t) = (−1)i−1bi(s,g2i−1(s))
∂ui0

∂x
(s,g2i−1(s), t), i = 1,2,

Ki j(s,τ) = (−1)i−1bi(s,g2i−1(s))
∂Γi

∂x
(s,g2i−1(s),τ,gi+ j(τ)), i = 1,2, j = 0,1.

Using the conditions 1, 4 and the estimates (3) (with r = 0, p = 1), we find that
Ψ3i−2(s, t)(0 ≤ s < t ≤ T , i = 1,2) are continuous functions which satisfy
the inequality

|Ψ3i−2(s, t)| ≤C∥ϕ∥(t − s)−
1
2 , i = 1,2. (15)

Further, the integrals with kernels K10 and K21 coincide with direct values of
conormal derivatives of the simple-layer potentials with an accuracy to bounded
multipliers. Therefore, for these kernels, the inequality

|Ki j(s, t)| ≤C(τ − s)−1+ λ

2 (16)

holds whenever 0 ≤ s < τ ≤ t ≤ T (see inequality (1.23) in [5]).
In view of the condition 3, the estimate (3) and the inequalities

|gi(τ)−g j(τ)| ≥C > 0, i ̸= j, τ ∈ [0,T ], (17)

σ
νe−cσ ≤ const (0 ≤ σ < ∞, 0 ≤ ν < ∞), (18)

it is not difficult to show that the estimate (16) can be also applied to the kernels K11
and K20.

Consider now the conjugation conditions (8) and (9). By requiring that the func-
tion u in (11) satisfies the condition (8), we get the equation

2

∑
i=1

1

∑
j=0

t∫
s

(−1)i−1
Γi(s,g2(s),τ,gi+ j(τ))V2i+ j−1(τ, t)dτ = Φ0(s, t), (19)

where Φ0(s, t) = u20(s,g2(s), t)−u10(s,g1(s), t).
The equation (19) is the Volterra integral equation of the first kind. In order to

regularize it, we introduce the integro-differential operator E which acts by the rule

E (s, t) f =

√
2
π

∂

∂ s

t∫
s

(ρ − s)−
1
2 f (ρ, t)dρ, 0 ≤ s < t ≤ T. (20)

After applying the operator E in (20) to the both sides of the equation (19), we obtain

2

∑
i=1

(−1)i−1 Vi+1(s, t)√
bi(s,g2(s))

=−Φ(s, t)+
2

∑
i=1

1

∑
j=0

t∫
s

Li j(s,τ)V2i+ j−1(τ, t)dτ, (21)
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where

Φ(s, t) =
1√
2π

t∫
s

(ρ − s)−
3
2 [Φ0(ρ, t)−Φ0(s, t)]dρ −

√
2
π
(t − s)−

1
2 Φ0(s, t),

Li j(s,τ) = (−1)i−1

√
2
π

∂

∂ s

τ∫
s

(ρ − s)−
1
2 Γi(ρ,g2(ρ),τ,gi+ j(τ))dρ, i+ j ̸= 2,

Li j(s,τ) = (−1)i−1

√
2
π

∂

∂ s

τ∫
s

(ρ − s)−
1
2
[
Γi1(ρ,g2(ρ),τ,gi+ j(τ))

+∆
g2(τ)
g2(ρ)

Γi(ρ,g2(ρ),τ,gi+ j(τ))
]
dρ, i+ j = 2.

Furthermore, Φ and Li j, respectively, satisfy the inequalities (15) and (16).
Thus, like (7), the condition (8) ultimately leads to the Volterra integral equation

of the second kind with the kernels that have integrable singularity.
The last integral equation, which connects all four functions Vk, k = 1,2,3,4, can

be obtained from the conjugation condition (9). By the already mentioned relation
on the jump of conormal derivative of a simple-layer potential, we get

2

∑
i=1

qi(s)
bi(s,g2(s))

Vi+1(s, t) = Ψ(s, t)+
2

∑
i=1

1

∑
j=0

t∫
s

Mi j(s,τ)V2i+ j−1(τ, t)dτ, (22)

where

Ψ(s, t) =
2

∑
i=1

[
(−1)iqi(s)

∂ui0

∂x
(s,g2(s), t)+

∫
Iis

∆
g2(s)
y ui0(s,y, t)µ(s,dy)

]
,

Mi j(s,τ) = (−1)iqi(s)
∂Γi

∂x
(s,g2(s),τ,gi+ j(τ))+

∫
Iis

∆
g2(s)
y Γi(s,y,τ,gi+ j(τ))µ(s,dy)

= M(1)
i j (s,τ)+M(2)

i j (s,τ), i = 1,2, j = 0,1. (23)

From the mean value theorem, the conditions 4-6 and the inequalities (3), (17),
(18), it follows that the function Ψ allows the estimate (15), and that M(1)

i j (s,τ)
satisfies (16).
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Let us get down to studying the integral term M(2)
i j (s,τ) on the right-hand side of

(23). For any δ > 0, we have

M(2)
i j (s,τ) =

∫
Iis\Iδ

is

∆
g2(s)
y Γi(s,y,τ,gi+ j(τ))µ(s,dy)

+
∫
Iδ
is

∆
g2(s)
y Γi1(s,y,τ,gi+ j(τ))µ(s,dy)+

∫
Iδ
is

∆
g2(s)
y Γi0(s,y,τ,gi+ j(τ))µ(s,dy)

= M(21)
i j (s,τ)+M(22)

i j (s,τ)+M(23)
i j (s,τ). (24)

Applying the mean value theorem to the difference ∆
g2(s)
y Γi1(s,y,τ,gi+ j(τ)) in the

expression for M(22)
i j and using the inequalities (3), (4) as well the condition 6, we

find that for 0 ≤ s < τ ≤ t ≤ T,

|M(2k)
i j (s,τ)| ≤C(δ )(τ − s)−1+ λ

2 , k = 1,2, (25)

where C(δ ) is some constant depending on δ .
Further, after writing the integrand in M(23)

i j in the form

−[2πbi(τ,gi+ j(τ))(τ − s)]−
1
2

1∫
0

∂

∂θ
exp

{
−

A(θ ,y,gi+ j(τ),g2(s))
2bi(τ,gi+ j(τ))(τ − s)

}
dθ ,

where

A(θ ,y,gi+ j(τ),g2(s)) = (1−θ)(y−gi+ j(τ))
2 +θ(g2(s)−gi+ j(τ))

2,

we obtain

M(23)
i j (s,τ) =

gi+ j(τ)−g2(τ)√
2π[bi(τ,gi+ j(τ))(τ − s)]

3
2

∫
Iδ
is

(y−g2(s))µ(s,dy)

×
1∫

0

exp
{
−

A(θ ,y,gi+ j(τ),g2(s))
2bi(τ,gi+ j(τ))(τ − s)

}
dθ − π

[2πbi(τ,gi+ j(τ))(τ − s)]
3
2

×
∫
Iδ
is

(y−g2(s))2
µ(s,dy)

1∫
0

exp
{
−

A(θ ,y,gi+ j(τ),g2(s))
2bi(τ,gi+ j(τ))(τ − s)

}
dθ

= M(231)
i j (s,τ)+M(232)

i j (s,τ). (26)
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Using the conditions 3, 6 and the inequalities (17), (18), we find that M(231)
i j (s,τ)

allows the inequality (25). For M(232)
i j (s,τ), after applying the inequalities

A(θ ,y,gi+ j(τ),g2(s))≥ θ(1−θ)(y−g2(s))2 (27)

and σe−cσ ≤ (c · e)−
1
2 (c > 0, 0 ≤ σ < ∞), we get (0 ≤ s < τ ≤ t ≤ T )

|M(232)
i j (s,τ)| ≤ 1

2C1

(
πC2

2C1e

) 1
2

λ
δ
is (τ − s)−1, i = 1,2, (28)

where C1 and C2 are the constants from 1), and by λ
δ
is we denote the integrals of the

function |y−g2(s)| over Iδ
is with respect to the measure µ . We pay attention to the fact

that the functions M(232)
i j (s,τ) have non-integrable singularity at τ = s.

Consider the system of equations (21), (22). Solving it with respect to V2 and V3,
and attaching to the obtained equations two more equations from the system (14),
we finally obtain (0 ≤ s < t ≤ T )

Vi(s, t) = Ψi(s, t)+
4

∑
j=1

t∫
s

Ni j(s,τ)Vj(τ, t)dτ, i = 1,2,3,4, (29)

where Ψ1(s, t) and Ψ4(s, t) are defined in (14),

Ψi(s, t) = di−1(s)
[

Ψ(s, t)+
(−1)i−1q4−i(s)√

b4−i(s,g2(s))
Φ(s, t)

]
, i = 2,3,

di−1(s) =
bi−1(s,g2(s))

√
b4−i(s,g2(s))

q1(s)
√

b2(s,g2(s))+q2(s)
√

b1(s,g2(s))
, i = 2,3,

N13(s,τ) = N14(s,τ) = N41(s,τ) = N42(s,τ)≡ 0, N11(s,τ) = K10(s,τ)

N12(s,τ) = K11(s,τ), N43(s,τ) = K20(s,τ), N44(s,τ) = K21(s,τ),

Ni j(s,τ) = di−1(s)
[

M1, j−1(s,τ)+
(−1)iq4−i(s)√
b4−i(s,g2(s))

L1, j−1(s,τ)
]
, i = 2,3, j = 1,2,

Ni j(s,τ) = di−1(s)
[

M2, j−3(s,τ)+
(−1)iq4−i(s)√
b4−i(s,g2(s))

L2, j−3(s,τ)
]
, i = 2,3, j = 3,4.

Combining (15), (16), (25), (28) and using the inequalities (10) and

|d j(s)| ≤
C2

q0

(
C2

C1

) 1
2

, s ∈ [0,T ], j = 1,2; q0 = min
s∈[0,T ]

(q1(s)+q2(s))> 0,

we find that Ψi(s, t)(i = 1,2,3,4) and Ni j(s,τ)(i = 1,4; j = 1,2,3,4) satisfy,
respectively, the estimates (15) and (16), and that the absolute values of Ni j(s,τ)
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(i = 2,3; j = 1,2,3,4) are bounded by C(δ )(τ − s)−1+ λ

2 +m(δ )(τ − s)−1, where

m(δ ) =

(
C2

C1

)2
π

q0
max

s∈[0,T ]
(λ δ

1s +λ
δ
2s).

The main point of the following discussion is to prove the possibility of applying
the ordinary method of successive approximations to the system of Volterra integral
equations of the second kind (29). Thus, we look for the solution of the system of
equations (29) of the form

Vi(s, t) =
∞

∑
k=0

V (k)
i (s, t), i = 1,2,3,4 (30)

where (i = 1,2,3,4, k = 1,2, . . .)

V (0)
i (s, t) = Ψi(s, t), V (k)

i (s, t) =
4

∑
j=1

t∫
s

Ni j(s,τ)V
(k−1)
j (τ, t)dτ.

Let us show that the series (30) converges when 0 ≤ s < t ≤ T . For the functions
V (0)

i (s, t) ≡ Ψi(s, t), i = 1,2,3,4, we already have the estimate with the right-hand
side C0∥ϕ∥(t − s)−

1
2 (see (15)), where C0 is some fixed positive constant.

Next, let us fix a sufficiently small δ = δ0 so that m0 = m(δ0) < 1. By induction
on k, we establish, upon using successively (23)-(28), the condition 1), the relation

t∫
s

(t − τ)−
1
2 (τ − s)−

3
2 e−

θ(1−θ)(y−g2(s))
2

2C2(τ−s) dτ =

(
2πC2

θ(1−θ)(t − s)

) 1
2 1
|y−g2(s)|

,

and the estimate (15) (for V (0)
i (s, t)), that

|V (k)
i (s, t)| ≤C0∥ϕ∥(t − s)−

1
2

k

∑
n=0

(
k
n

)
h(k−n)

s,t mn
0, (31)

where

h(k)s,t =
(CΓ(λ

2 ))
kΓ(1

2)

Γ(1+kλ

2 )
(t − s)

kλ

2

(Γ(σ) is the gamma function). Using (31), we obtain

∞

∑
k=0

|V (k)
i (s, t)| ≤C0∥ϕ∥(t − s)−

1
2

∞

∑
k=0

[CΓ(λ

2 )]
kΓ(1

2)

Γ(1
2 +

kα

2 )(1−m0)k+1
(t − s)

kλ

2 . (32)

From the inequality (32), it follows that the series (30) converges and that the
functions Vi(s, t)(i = 1,2,3,4) are continuous for 0 ≤ s < t ≤ T, and they allow
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the inequality (15). Thus, the formula (30) represents the unique solution of the
system of integral equations (29).

Having proved that u(s,x, t) satisfies (8)-(9), we now get down to proving (5) and
(6). From the properties of the fundamental solution Γi(s,x, t,y), i= 1,2, the estimate
(3) (with r = p = 0) and the condition 4), it follows that the function ui0(s,x, t),
i = 1,2, is continuous in D(i)

t , satisfies in D(i)
t the equation (5), the initial condition

(6) as well as the inequality

|ui0(s,x, t)| ≤C∥ϕ∥, i = 1,2. (33)

Further, by (3) and (15) (with Ψ3i−2 replaced by Vi, i = 1,2,3,4), we obtain

ui1(s,x, t)≤C∥ϕ∥
t∫

s

(τ − s)−
1
2 (t − τ)−

1
2 dτ ≤C∥ϕ∥, i = 1,2. (34)

Hence the function ui1(s,x, t) is bounded in D(i)
t and satisfies in D(i)

t the equation (5)
with zero initial condition lim

s→t
ui1(s,x, t) = 0(x ∈ It). Additionally, we check that this

condition holds for x ∈ It . Thus, the existence of a classical solution of the problem
(5)-(9) is proved. The proof of uniqueness is a repetition of the proof of Theorem 2.2
in [5] with obvious changes.

The proof of Theorem 1 is now complete. ■

4. Construction of a diffusion process with moving membranes

In this section we prove that the solution u(s,x, t) ≡ Tstϕ(x) of the problem (5)-
-(9) can be considered as the two-parameter operator semigroup describing a certain
Markov process with trajectories in curvilinear domain DT .

Having the solution u(s,x, t) of the problem (5)-(9), we define the two-parameter
family of linear operators (Tst), 0 ≤ s ≤ t ≤ T in Cb(R). For 0 ≤ s < t ≤ T, x ∈ Is and
ϕ ∈Cb(R), we put

Tstϕ(x) = T (0i)
st ϕ(x)+T (1i)

st ϕ(x), x ∈ Iis, i = 1,2, (35)

where Tstϕ(x) = u(s,x, t), T (0i)
st ϕ(x) = ui0(s,x, t), T (1i)

st ϕ(x) = ui1(s,x, t), the func-
tions u, ui0 and ui1, i = 1,2, are defined by the formulas (11), (12) and (13), (30),
respectively. Furthermore, Tss = E, where E is the identity operator, and Tstϕ(x)
satisfies the estimate (33) for all (s,x) ∈ Dt .

Theorem 2 Assume that the coefficients of operators L(i)
s the functions g j, qi

(i= 1,2, j = 1,2,3) and the measure µ satisfy the conditions of Theorem 1. Then, the
two-parameter operator family (Tst), defined by (35), describes the inhomogeneous
Feller process in R, the trajectories of which are located in curvilinear domain DT .
In DT \ (Ci ∪Ci+1), the trajectories of this process can be treated as the trajecto-
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ries of the diffusion process generated by L(i)
s (i = 1,2), and at the points of curves

C j ( j = 1,2,3), they behave according to the boundary conditions in (7) and (9),
respectively. 2

PROOF We first show that the family of operators (Tst) defined by (35) is the two-
-parameter Feller semigroup. To do this, we note that the semigroup property can
be established using the assertion of Theorem 1 on the uniqueness of the solution
of the problem (5)-(9) by repeating almost verbatim the proof of the analogous fact
in [5, Section 3].

Further, combining the schemes used to prove lemmas in [4, Section 3] and
[5, Section 3], we get the following result:

Lemma 1 If ϕ ∈Cb(R) and ϕ(x)≥ 0 for all x ∈ R, then Tstϕ(x)≥ 0 for all 0 ≤ s ≤
t ≤ T, x ∈ Is. 2

Now, we can easily finish the proof of Theorem 2. Putting ϕ0(x) ≡ 1 in (35), we
find by direct calculations that Tstϕ0(x)≡ 1. From this and from Lemma 1, it follows
that the operators Tst are contractive, i.e., they do not increase the norm of element.

Combining the above properties of the operator family Tst , we conclude (see [13,
Ch. II, §1], [3, Ch. I]) that Tst is a two-parameter Feller semigroup associated with
the desired Markov process.

The proof of Theorem 2 is complete. ■

5. Conclusions

In the paper, using analytical methods, we construct the two-parameter Feller
semigroup associated with the inhomogeneous Markov process on the given inter-
val of the real line with variable boundaries, which occurs after pasting together two
given diffusion processes on this interval. The needed semigroup is obtained by the
methods of potential theory with the use of the solution of the corresponding Feller-
-Wentzell initial-boundary value problem for one-dimensional (with respect to the
space variable) parabolic backward Kolmogorov equation with discontinuous coeffi-
cients to which the output problem is reduced.

The peculiarity of this problem is that one of the two its conjugation conditions is
non-classical and contains the non-local term of the integral type. Furthermore, the
problem, formulated in such a way, is studied for the first time in bounded curvilinear
domains, whose boundaries are non-smooth functions of time variable. The Markov
process constructed in the described way can serve as a mathematical model of the
physical phenomenon of diffusion in media with moving membranes.
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