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Abstract. In light of recent advancements in the literature concerning the Homotopy
Analysis Method (HAM), this paper introduces a stepwise homotopy analysis methodology.
This approach is employed to derive explicit series solutions for a generalized Nosé-Hoover
oscillator. Using an optimized homotopy analysis strategy, the computational efficiency of
HAM is enhanced through small step intervals, significantly expediting the convergence of
series solutions over an extended duration. Comparative analyses between analytical and
numerical results are illustrated. The fluctuation in amplitude of the approximate analytical
solutions, with respect to the control parameters of the system, is used to generate density
plots. These plots serve to highlight additional dynamic features of the oscillator.
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1. Introduction

A new paradigm in the study of thermodynamics has been achieved with the intro-
duction, by Shiuchi Nosé in 1984, of a particular set of differential equations (please
see [1] and references therein). Different aspects of the study of the Nosé’s oscillator
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throughout the years, namely its meaning and connections with other fields, can be
found in [2–6]. As a consequence of the Nosé’s equations, in 1986, Hoover and his
collaborators, Posch and Vesely, obtained the Nosé-Hoover oscillator corresponding
to the following equations of motion [7]

dx
dt

= y;
dy
dt

=−x− yz;
dz
dt

= α
(
y2 −1

)
, (1)

where x represents the oscillator coordinate, y represents momentum and z represents
the friction coefficient, dynamical variables of a one-dimensional harmonic oscilla-
tor. As the role of the friction coefficient z is to maintain the average temperature
equal to 1, α is a positive coupling control parameter. The explicit series solutions
reported in the present paper consider a generalized Nosé-Hoover oscillator [8], more
specifically the two-parameter set of three nonlinear ordinary differential equations
given by

dx
dt

= y;
dy
dt

=−x− yz;
dz
dt

= α
(
y2 −1− εz

)
. (2)

This system differs from the original form of the Nosé-Hoover oscillator (1) by the
small dissipative term added to the energizing-dapping variable z, a term that includes
the parameter ε . In this article, the variation of the approximate analytical solutions
of (2) with α and ε will be considered.

Given the importance of the Nosé-Hoover oscillator, several numerical algorithms
for approximating solutions have been used. Nevertheless, we are only able to study
the dynamics at discrete points. In this context, there are no analytical expressions
for the solutions, preventing the examination of the system’s behavior from a contin-
uous perspective. Exact solutions for nonlinear equations are generally challenging
to obtain, leading to the widespread use of perturbation techniques, transforming
nonlinear problems into mostly linear sub-problems. Despite their success, these
methods are constrained by the necessity of small physical parameters and limited
flexibility, making them primarily applicable to weakly nonlinear problems. Non-
-perturbation methods, like Lyapunov’s Artificial Small Parameter Method and the
Adomian Decomposition Method [9], offer alternatives but come with limitations,
such as the lack of freedom to choose nonlinear operators and uncertainty regarding
convergence. Consequently, both perturbation and traditional non-perturbation meth-
ods are typically valid for weakly nonlinear problems. Recognizing these limitations,
there is a call for the development of a new analytic approximation methodology.
The Homotopy Analysis Method (HAM), pioneered by Liao (see, for instance,
[10–15]), has precisely the following three essential advantages, emerging as
a powerful analytic technique for obtaining convergent series solutions to strongly
nonlinear problems: (i) independence from small/large physical parameters, (ii) free-
dom to choose equation types and solution expressions for high-order approxima-
tions, and (iii) a reliable distinguished mechanism to ensure the convergence of
approximation series solutions, using an artificial convergence control parameter.
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The HAM surpasses limitations of traditional methods like Lyapunov’s Artificial
Small Parameter Method, the Adomian Decomposition Method, and the Homotopy
Perturbation Method.

This paper introduces the Step Homotopy Analysis Method (SHAM), a modifica-
tion of the Homotopy Analysis Method (HAM) outlined in [13]. SHAM is applied
to derive approximate analytical solutions for the perturbed Nosé-Hoover model.
In this approach, HAM is treated as an algorithm within a specific sequence of small
intervals, extending the homotopy analysis technique to achieve accurate approxi-
mate solutions, especially applicable during a high value of time t. Upon implementa-
tion, it becomes evident that solutions obtained using the conventional one-time step
HAM are valid only for a brief time interval. In contrast, solutions derived through
SHAM remain valid for an extended time, accommodating the necessary duration to
meet our requirements.

2. A concise description of HAM

Let us consider a system of r ordinary differential equations, and their respective
initial conditions, given by

.
xi = fi (t,x1, ...,xr) , xi(t0) = xi,0, i = 1,2, ...,r. (3)

To start with, according to HAM [13], each equation of the system (3) is written
in the form Ni [x1(t),x2(t)...,xr(t)] = 0, i = 1,2, ...,r, where Ni are nonlinear oper-
ators, xi(t) are unknown functions, and t denotes the independent variable. From
a generalization of the traditional homotopy method, it has been established that
the so-called zeroth-order deformation equation is given by

(1−q)L [φi (t;q)− xi,0(t)] = q h Ni [φ1 (t;q) , ...,φr (t;q)] , (4)

where q ∈ [0,1] is an embedding parameter, L is an auxiliary linear operator, φi (t;q)
are unknown functions, xi,0(t) are initial guesses, and h is a non-zero auxiliary arti-
ficial parameter. In the context of HAM, there is great freedom to choose auxiliary
entities such as L , h and base functions for the representation of the solution xi(t).
Notice that, when q = 0 and q = 1, both φi (t;0) = xi,0(t) and φi (t;1) = xi(t) hold.
According to (4), as q increases from 0 to 1, the function φi (t;q) varies from the
initial guess xi,0(t0) = xi(t0), at t = t0, to the solution xi(t). The expansion of φi (t;q)
in the Taylor series with respect to q, is given by

φi (t;q) = xi,0(t)+
+∞

∑
m=1

xi,m(t)qm, where xi,m(t) =
1

m!
∂ mφi (t;q)

∂qm

∣∣∣∣
q=0

. (5)

When the auxiliary linear operators, the base functions, and the auxiliary param-
eter h, are properly chosen, the series (5) converges at q = 1 and
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xi(t) = φi (t;1) = xi,0(t)+
+∞

∑
m=1

xi,m(t), i = 1,2, ...,r,

which are the solutions of the original nonlinear equations. Taking the mth-order
homotopy-derivative of the zeroth-order Eqs. (4), and using the corresponding prop-
erties, we obtain the mth-order deformation equations

L [xi,m(t)−χmxi,m−1(t)] = hRi,m [x1,m−1(t), ...,xr,m−1 (t)] , i = 1,2, ...,r, (6)

where: Ri,m [x1,m−1(t), ...,xr,m−1 (t)] =
1

(m−1)!
∂ m−1Ni [φ1 (t;q) , ...,φr (t;q)]

∂qm−1

∣∣∣∣
q=0

,

χm =

{
0, m ≤ 1
1, m > 1

and L is the time differentiation operator. Solutions of linear

mth-order deformation equations (6), satisfying the initial conditions, for all m ≥ 1,
are given by

xi,m(t) = χmxi,m−1(t)+h
t∫

0

Ri,m[x1,m−1(t), ...,xr,m−1 (t)]dτ.

Truncating the homotopy series solutions xi(t) = xi,0(t)+
+∞

∑
m=1

xi,m(t), at the Mth step,

we obtain the Mth-order approximate solutions in the form

x(M)
i (t) = xi,0(t)+

M

∑
m=1

xi,m(t), where i = 1,2,3, ...,r.

Given the specificities of different nonlinear problems, different orders of approxi-
mation can be used. With the described procedure, the HAM converts a complicated
nonlinear problem into simpler linear sub-problems. For some strongly nonlinear
problems, this described one-time step HAM scheme is only accurate for a short value
of t. As a consequence, it is appropriate to use the previously mentioned Step Homo-
topy Analysis Method (SHAM). As already pointed out, with the SHAM approach,
HAM is treated as an algorithm in each of the successive time step intervals of small
amplitude. This computational scheme generalizes the homotopy analysis approach
for finding accurate approximate solutions for a nonlinear problem, in terms of a con-
vergent series with easily computable components, valid for a high value of t = T .
More precisely, in the context of SHAM, let [0,T ] be the interval over which we want
to find the solution of the initial value problem (3). We start by assuming that the
interval [0,T ] is divided into n-subintervals of equal length ∆t, [t0, t1], [t1, t2], [t2, t3],
..., [tn−2, tn−1], [tn−1, tn], with t0 = 0 and tn = T , as illustrated in Figure 1. Each subin-
terval has the form [t j−1, t j], j = 1,2,3, ...,n. Let t∗ = t j−1 be the initial value of each
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subinterval. The Mth-order approximate solutions of the given system (3), in each
subinterval [t j−1, t j], j = 1,2,3, ...,n, will have the form

x(M)
i, j (t) = xi, j,0(t)+

M

∑
m=1

xi, j,m(t − t∗), i = 1,2, ...,r, j = 1,2,3, ...,n. (7)

For the initial value of each subinterval, t = t∗, the initial values of the dynami-
cal variables xi, j,0, i = 1,2, ...,r, j = 1,2,3, ...,n, satisfy the family of solutions (7),
since for all m ≥ 1 we conveniently obtain the terms xi, j,m (0) = 0. In the beginning
of the procedure, only the initial data at t = t∗ = 0 is known for x(M)

i, j (t), i = 1,2, ...,r,
j = 1,2,3, ...,n. The initial conditions will be changed at each subinterval. In partic-
ular, the corresponding initial values at t∗ = t j−1, for j = 2,3, ...,n, of each one of
the following step intervals, is obtained by using the previous approximate solutions
computed at the previous step, thus ensuring continuity of solutions. 1

t0 = 0 t1 t2 t3 tn�2 tn�1 tn = T· · ·
�t �t �t �t �t

Fig. 1. Interval [0,T ] divided into a sequence of n-subintervals,
[
t j−1, t j

]
, j = 1,2,3, ...,n,

of equal length ∆t

3. The step homotopy analysis technique and the analytic solutions

The analytical approach of HAM [13] will be used in a sequence of intervals,
giving rise to the mentioned Step Homotopy Analysis Method (SHAM). In the
following section, we outline the description of SHAM applied to the modified
Nosé-Hoover model (2).

3.1. Explicit series solutions

Based on the primary definitions of the HAM, we are able to obtain explicit
approximation series solutions for the state variables x, y, and z of the general-
ized Nosé-Hoover model (2). Let us consider our approximations x(t), y(t) and z(t)
that are defined by constant functions taking the initial condition values such that
x0(t) = x0, y0(t) = y0, and z0(t) = z0. For our present analysis, we set the following
values for the initial conditions x0 = 0.9209, y0 = −0.1560 and z0 = 0.9179. In the
context of HAM, there is freedom to choose auxiliary linear operators, and we are
going to consider

L [φ1(t;q)] =
∂φ1(t;q)

∂ t
, L [φ2(t;q)] =

∂φ2(t;q)
∂ t

and L [φ3(t;q)] =
∂φ3(t;q)

∂ t
,
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with the property L (ci) = 0, where ci (i = 1,2,3) are integral constants. The non-
linear operators for the Nosé-Hoover oscillator (2) are defined as follows:

N1[φ1(t;q),φ2(t;q),φ3(t;q)] =
∂φ1(t;q)

∂ t
−φ2(t;q),

N2[φ1(t;q),φ2(t;q),φ3(t;q)] =
∂φ2(t;q)

∂ t
+φ1(t;q)+φ2(t;q)φ3(t;q),

N3[φ1(t;q),φ2(t;q),φ3(t;q)] =
∂φ3(t;q)

∂ t
−αφ

2
2 (t;q)+α +αεφ3(t;q).

The zeroth-order deformation equations assume the form

(1−q)L [φ1(t;q)− x0(t)] = qhN1[φ1(t;q),φ2(t;q),φ3(t;q)], (8)

(1−q)L [φ2(t;q)− y0(t)] = qhN2[φ1(t;q),φ2(t;q),φ3(t;q)],

(1−q)L [φ3(t;q)− z0(t)] = qhN3[φ1(t;q),φ2(t;q),φ3(t;q)],

with initial conditions φ1(0;q) = 0.9209, φ2(0;q) =−0.1560 and φ3(0;q) = 0.9179.
Given the zeroth-order equations (8), their solutions are:

for q = 0 → φ1(t;0) = x0 (t) , φ2(t;0) = y0 (t) , and φ3(t;0) = z0 (t) ,
for q = 1 → φ1(t;1) = x(t), φ2(t;1) = y(t), and φ3(t;1) = z(t).

(9)

By increasing q from 0 to 1, the functions φi(t;q) (i = 1,2,3) vary from x0(t),
y0(t) and z0(t) to x(t), y(t) and z(t), respectively. Expanding each of the functions
φi(t;q) (i = 1,2,3) in the Taylor series, with respect to q, we obtain the homotopy
series

φ1(t;q) = x0(t)+
+∞

∑
m=1

xm(t)qm, φ2(t;q) = y0(t)+
+∞

∑
m=1

ym(t)qm,

φ3(t;q) = z0(t)+
+∞

∑
m=1

zm(t)qm, where
(10)

xm(t)=
1

m!
∂ mφ1(t;q)

∂qm

∣∣∣∣
q=0

, ym(t)=
1

m!
∂ mφ2(t;q)

∂qm

∣∣∣∣
q=0

, zm(t)=
1

m!
∂ mφ3(t;q)

∂qm

∣∣∣∣
q=0

.

(11)
The auxiliary parameter h is chosen properly to ensure the convergence, of all series,
for q = 1. From Eqs. (9)-(11), we obtain the homotopy series solutions

x(t) = x0(t)+
+∞

∑
m=1

xm(t), y(t) = y0(t)+
+∞

∑
m=1

ym(t), and z(t) = z0(t)+
+∞

∑
m=1

zm(t). (12)

Now, we differentiate the zeroth-order Eqs. (8) m times using the following prop-
erties that, for illustrative purposes, are applied to arbitrary dynamical variables xi

(i = 1,2,3). The terms xm, ym and zm of the Nosé-Hoover dynamical variables corre-
spond to the terms of these dynamical variables x1,m, x2,m and x3,m, used to state the



Homotopy analysis of explicit series solutions in a modified Nosé-Hoover oscillator 25

selected algebraic properties of the HAM methodology, that is, xm = x1,m, ym = x2,m,
and zm = x1,m.

Dm(φi) = xi,m, Dm

(
qk

φi

)
= Dm−k(φi) =

{
xi,m−k, 0 ≤ k ≤ m,
0, otherwise

Dm(φ
2
1 ) =

m

∑
k=0

xi,m−k xi,k, Dm(φiψi) =
m

∑
k=0

Dk(φi)Dm−k(ψi) =
m

∑
k=0

xi,k yi,m−k,

where Dm stands for the mth-order derivative with respect to the homotopy parameter
q. As a consequence, we obtain the mth-order deformation equations

L [xm(t)−χmxm−1(t)] = hR1,m[
−→u m−1 (t)],

L [ym(t)−χmym−1(t)] = hR2,m[
−→u m−1 (t)],

L [zm(t)−χmzm−1(t)] = hR3,m[
−→u m−1 (t)],

(13)

for which xm(0) = 0, ym(0) = 0, zm(0) = 0, where

χm =

{
0, for m ≤ 1
1, for m > 1

, −→u m−1 (t) = (xm−1(t),ym−1(t),zm−1(t)) , m = 1,2,3, . . .

R1[
−→u m−1] =

dxm−1(t)
dt

− ym−1(t),

R2[
−→u m−1] =

dym−1(t)
dt

+ xm−1 +
m−1

∑
k=0

ym−1−k(t)zk(t)

and R3[
−→u m−1] =

dzm−1(t)
dt

−α

m−1

∑
k=0

ym−k(t)yk(t)+(1−χm)α +αεzm−1(t).

Solutions of the linear mth-order deformation equations (13), satisfying the initial
conditions xm(0) = 0, ym(0) = 0, zm(0) = 0 for all m ≥ 1, are given by

xm(t) = χmxm−1(t)+h
t∫

0

R1,m[
−→u m−1 (t)]dτ, ym(t) = χmym−1(t)+h

t∫
0

R2,m[
−→u m−1(t)]dτ

and zm(t) = χmzm−1(t)+h
t∫

0

R3,m[
−→u m−1(t)]dτ .

(14)
For the computation of each term of order m = 1,2,3, ..., only the respective term of
order m−1 is needed. Truncating the homotopy series (12) at the Mth step, we obtain
the Mth-order approximate solutions in the form

x(M)(t)= x0(t)+
M

∑
m=1

xm(t), y(M)(t)= y0(t)+
M

∑
m=1

ym(t) and z(M)(t)= z0(t)+
M

∑
m=1

zm(t),

(15)
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where M = 1 corresponds to the initial conditions, M = 2 corresponds to:

x(2)(t) = 0.9209+0.312ht +h(0.156ht −0.38885ht2)t

y(2)(t) = −0.156+1.55542ht +h(0.77770ht

+0.43492ht2 −0.076101ht2
α −0.07159ht2

αε)

z(2)(t) = 0.9179+2ht(0.97566α +0.9179αε)+h(0.97566htα

+0.12132ht2
α +0.9179htαε +0.48783ht2

α
2
ε +0.45895ht2

α
2
ε

2),

and, similarly, the aforementioned procedure applies to the remaining terms in the
series solutions (15). In order to obtain approximations to solutions for large values of
t, we use the SHAM, which corresponds to the application of the HAM on a sequence
of intervals with the time step ∆t. For illustrative purposes, let us consider the
9th-order approximations

x(9)(t) = x0(t)+
9

∑
m=1

xm(t), y(9)(t) = y0(t)+
9

∑
m=1

ym(t) and z(9)(t) = z0(t)+
9

∑
m=1

zm(t).

(16)
Notice that we can use approximations of any desired order that serves our particular
needs. Using SHAM, the 9th-order approximate solutions of the given system (2) in
each subinterval [t j−1, t j], j = 1,2,3, ...,n, have the form

x(9)(t) = x(t∗)+
9

∑
m=1

xm(t − t∗), y(9)(t) = y(t∗)+
9

∑
m=1

ym(t − t∗) and

z(9)(t) = z(t∗)+
9

∑
m=1

zm(t − t∗).
(17)

By determining the variables x(t), y(t) and z(t) for t = t∗ = 0, the corresponding
initial values for the subsequent step intervals at t∗ = t j−1, where j = 2,3, ...,n, are
computed using the previously approximated solutions obtained at the preceding step.
This ensures the smooth progression of solutions. The homotopy terms are dependent
on both the physical variable t and the convergence control parameter h. How can
an appropriate value for the convergence control parameter h be identified to achieve
a convergent series solution? Moreover, is there a way to expedite the convergence
of the series? These queries form the focus of the subsequent section.

3.2. Interval of convergence and optimal value for h

In this section, we describe an optimization technique that enables us to achieve
two objectives: (i) identify all values of the control parameter h for which the series
converges to the exact solution, and (ii) tackle the challenge of selecting the optimal
h, ensuring the fastest convergence of the series (for details, please see [13]).
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Let us consider k+1 homotopy terms x0(t), x1(t), x2(t), ..., xk(t) of an homotopy

series x(t) = x0(t)+
+∞

∑
m=1

xm(t). According to what is stated in [13] and considering

an interval of time Ω, the ratio β =

∫
Ω
[xk(t)]

2 dt∫
Ω
[xk−1(t)]

2 dt
with

∫
Ω
[xk(t)]

2 dt∫
Ω
[xk−1(t)]

2 dt
< 1 and

dβ

dh
= 0, offers a convenient way to evaluate the convergence control parameter h

(and similarly for variables y and z). For a given order of approximation, the β versus
h curves not only define the effective region for the convergence control parameter
but also identify the optimal h value corresponding to the absolute minimum of β .
Notably, reaching a minimum is not essential for HAM convergence; the critical fac-
tor is choosing a value that makes the ratio β less than unity. By plotting β against
h, the convergence interval and the optimal value for the parameter h can be simul-
taneously determined. At the M = 9 order of approximation, Figure 2 (left column)
displays the curves of ratio β versus h for x(t), y(t) and z(t). Table 1 presents the
corresponding convergence intervals of h and their optimal values, denoted as h∗.

Using the ratio β , we can efficiently determine the exact convergence interval and
optimal h value, providing a key advantage in studying HAM convergence. In the
right column of Figure 2, the SHAM analytical solutions for x, y, and z are compared
with numerical results, using the optimal values from Table 1.
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Fig. 2. Left column – The curves of ratios βx, βy and βz versus hx, hy and hz, corresponding to
a 9th-order approximation of solutions (k = M = 9). The optimum values of h, h∗, give rise to the

minimum values of the curves β . Right column – Comparison of the approximate SHAM analytical
solutions (17) of x(t), y(t) and z(t) (solid lines) with the respective numerical solutions (dotted lines),

considering t ∈ [0,50]. In all situations, α = 11 and ε = 0.00002
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Table 1. Intervals of convergence of h and the respective optimum values h∗, corresponding to the
dynamical regimes presented in Figure 2

β -Curves Convergence intervals Convergence optimal values of h
βx −0.97318 < hx <−0.14430 h∗x =−0.86987
βy −0.79358 < hy <−0.34984 h∗y =−0.74239
βz −0.22990 < hz < 0 h∗z =−0.19696
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Fig. 3. Upper panel – Density plots representing the variation of the maximum amplitude of x, y and z
time series. Lower panel – Density plot depicting the MLE variation; Bifurcation diagram displaying

the long-term behavior of the system (2) for ε = 0.00002 and α ∈ [0,14]; Nosé-Hoover attractor
for ε = 0.00002 and α = 11

Additionally, Figure 3 illustrates the variation of amplitude for the dynamical vari-
ables. Notably, for x and z, the amplitude variation is particularly diverse, associated
with positive values of the Maximum Lyapunov Exponent (MLE), λ1, indicating
chaotic behavior. Specifically, for α = 11 and ε = 0.00002, we obtain λ1 = 0.033350.
A density plot depicting the MLE variation is shown, and the bifurcation diagram
represents the long-term behavior of the system (2) with ε = 0.00002 and α ∈ [0,14]
(as indicated by the dashed line in the MLE density plot). Figure 3 also presents
the Nosé-Hoover attractor for α = 11 and ε = 0.00002. For solutions in the chaotic
region, and for a larger value of t, namely t = T = 106, the same analysis has been
performed, and the same qualitative behavior has been obtained.

4. Conclusion

This paper introduces the Step Homotopy Analysis Method (SHAM), which is
a modification of the Homotopy Analysis Method (HAM), for obtaining approximate
analytical solutions to the perturbed Nosé-Hoover model. HAM is treated as an algo-
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rithm in a sequence of small intervals, generalizing the one-step homotopy analysis
for accurate solutions valid at a high value of t. Solutions obtained with one-time
step HAM are limited to a short time interval, while SHAM extends validity for t as
necessary. The homotopy analysis approach is independent of physical parameters,
and its terms depend on both t and the convergence control parameter h. This param-
eter h can be chosen freely within a determined interval of convergence. For practi-
cal purposes, h is crucial in HAM, allowing accurate approximations with minimal
homotopy terms. This sets HAM apart from other perturbation-like techniques. This
study demonstrates the potential of HAM for solving highly nonlinear problems,
showcasing an integrated approach that combines numerical evidence and theoret-
ical reasoning within the theory of dynamical systems, enhancing our understanding
of nonlinear models, especially in a physical context.
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