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Abstract. Solving boundary value problems with parameters is challenging. Based on the
homotopy analysis method, explicit formulas for the approximate solutions to a class of
higher-order parametric boundary value problems are obtained. These explicit formulas give
more insight into the solution structures of the given problems. The effectiveness of this
approach is demonstrated by solving two specific parametric boundary value problems.
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1. Introduction

The higher-order boundary value problem is an active research field; see [1–3] and
the references therein. Consider the fourth-order parametric boundary value problem:

u(4)(x) = (1+ γ)u′′(x)− γu(x)+
1
2

γx2 −1, (1)

u(0) = 1, u′(0) = 1, u(1) =
3
2
+ sinh(1), u′(1) = 1+ cosh(1), (2)

and the sixth-order parametric boundary value problem:

u(6)(x) = (1+ γ)u(4)(x)− γ u′′(x)+ γ x, (3)

u(0) = 1, u′(0) = 1, u′′(0) = 0,

u(1) =
7
6
+ sinh(1), u′(1) =

1
2
+ cosh(1), u′′(1) = 1+ sinh(1). (4)

The general solutions to these problems depend upon the parameter γ , but the
specific boundary conditions cause the coefficients of the terms containing γ to be
identically zero. Thus, the exact solutions for the full boundary-value problems are



32 D.J. Jeffrey, S. Liang

uexa4(x) = 1+
1
2

x2 + sinh(x) and (5)

uexa6(x) = 1+
1
6

x3 + sinh(x) (6)

respectively.
Although the parameter γ is not visible in the exact solutions, it strongly influ-

ences the solution process, and causes the task of correctly identifying the relevant
coefficients to be a difficult challenge.

Problems (1)-(2) and (3)-(4) were investigated by applying the Adomian decom-
position method (ADM) and the homotopy perturbation method (HPM) [4, 5].

For each of the two problems, the two methods obtained the same series solutions.
However, the solutions found were in good agreement with the exact solutions only
for small values of γ . For large values of γ , these methods did not give accurate series
solutions. For example, when γ = 100, the relative error of the nth-order approxima-
tion to the fourth-order problem (1)-(2) given by the ADM increased exponentially
as n increased, as shown in Table 1, in which αEβ stands for α × 10β [6]. It was
justified in [7] that the HPM or the classical ADM, being a series method, fails to
converge to the true solution.

Table 1. Relative errors of the ADM solutions when γ = 100

x 5th order 10th order 15th order 20th order
0.1 0.8 1.3E2 2.1E4 3.3E6
0.2 2.7 4.3E2 6.8E4 1.1E7
0.3 4.6 7.3E2 1.2E5 1.8E7
0.4 5.8 9.1E2 1.4E5 2.3E7
0.5 5.8 9.1E2 1.4E5 2.3E7
0.6 4.8 7.5E2 1.2E5 1.9E7
0.7 3.1 4.9E2 7.8E4 1.2E7
0.8 1.5 2.4E2 3.8E4 5.9E6
0.9 0.3 6.0E1 9.5E4 1.6E6

It is expected that the successful solutions can only be achieved by imbedding
a convergence parameter in such classical approaches to adjust and control the con-
vergence region and the convergence rate of the resulting series solution; see [8, 9].

The homotopy analysis method (HAM) [10–13] is a popular analytic approach
for seeking series solutions to differential equations and related problems. Based on
the HAM, accurate series solutions to the fourth-order problem (1)-(2) and the sixth-
-order problem (3)-(4) for any large values of γ were obtained [6, 14]. Furthermore,
some numerical analysis was presented for the relationship between the parameter γ

and the convergence-control parameter c0 for both problems by means of the rational
interpolation technique [15].

Based on the optimal variational iteration method, accurate series solutions to the
fourth-order problem (1)-(2) for any large values of γ were obtained [3]. Moreover,
some numerical analysis was also presented by means of the h-curve technique.
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Different from the contributions above, for each of the two problems, an explicit
formula for the resulting series solutions is established in this paper, and the relation-
ship between γ and c0 is revealed which states that the product of γ and c0 converges
to a constant as γ →+∞. Based on the explicit formula and the relationship between
γ and c0, accurate series solutions are obtained no matter how large the value of γ is,
by choosing a proper value of c0, and some interesting phenomena on the resulting
solutions can also be explained. At the end of this paper, an explicit solution formula
for the general higher-order linear boundary value problem with one parameter is also
established.

2. Solution to the fourth-order problem

As usual, one constructs the zeroth-order deformation equation

(1− p)L [φ(x; p)−u0(x)] = pc0 N [φ(x; p)] where (7)

L [φ(x; p)] =
∂ 4φ(x; p)

∂x4 (8)

u0(x) = x4 −
(

1+
e
2
− 3

2e

)
x3 −

(
1
2
− e+

2
e

)
x2 + x+1 (9)

N [φ(x; p)] =
∂ 4φ (x; p)

∂x4 − (1+ γ)
∂ 2φ (x; p)

∂x2 + γ φ (x; p)− γ

2
x2 +1. (10)

The initial approximation u0(x) is chosen as follows: Let u0(x) = x4+ax3+bx2+
cx+d. Then the values of a, b, c, d are determined by the boundary conditions (2).
Following the standard procedure of the HAM, one obtains an nth-order approxima-
tion to the boundary value problem (1)-(2):

Un(x;c0,γ) =
n

∑
m=0

um(x). (11)

For this approximation, one has the following:

Theorem 1. Let η = c0γ . Then Un(x;c0,γ) can be expressed as

Un(x;c0,γ) = η
n pn(x)+η

n−1 pn−1(x)+ · · ·+ p0(x)+ c0 q(x;c0,γ), (12)

where pn, pn−1, . . . , p0 and q are polynomials over R, and for every term T in q, pro-
vided q ̸= 0, deg(T,c0)≥ deg(T,γ).

Proof 1. We first prove that the general term um(x) can be expressed as

um(x) = η
m pm,m(x)+η

m−1 pm,m−1(x)+ · · ·+ pm,0(x)+ c0 qm(x;c0,γ), (13)

where pm,m, pm,m−1, . . . , pm,0 and qm are polynomials over R, and deg(T,c0)≥ deg(T,γ)
for every term T in qm, in case qm ̸= 0.
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In view of the initial guess u0(x), it is obvious that (13) is true for m = 0.
Now suppose that (13) is true for m = k. We need to prove that (13) is also true

for m = k+1.
The (k+1)th-order deformation equation can be expressed as

u(4)k+1(x) = χk+1u(4)k (x)+ c0Rk+1(⃗uk(x))

= F(x)+ c0G(x)+ηH(x)

where F(x) = χk+1u(4)k (x)

G(x) = u(4)k (x)−u
′′
k(x)+(1−χk+1)

H(x) =−u
′′
k(x)+uk(x)+

χk+1 −1
2

x2

and χk+1 =

{
0, if k = 0
1, if k > 0.

Notice that the derivatives above are with respect to x. So, by the inductive
hypothesis, one can express F(x),G(x) and H(x) respectively as follows:

F(x) = η
k fk(x)+η

k−1 fk−1(x)+ · · ·+ f0(x)+ c0 f (x;c0,γ) ,

G(x) = η
kgk(x)+η

k−1gk−1(x)+ · · ·+g0(x)+ c0g(x;c0,γ) ,

H(x) = η
khk(x)+η

k−1hk−1(x)+ · · ·+h0(x)+ c0h(x;c0,γ) .

Therefore, u(4)k+1(x) can be expressed as

u(4)k+1(x) = η
k+1sk+1(x)+η

ksk(x)+ · · ·+ s0(x)+ c0s(x;c0,γ) , (14)

where sk+1,sk, . . . ,s0 and s are polynomials over R, and for every term T in s,
provided s ̸= 0, deg(T,c0)≥ deg(T,γ).

Solving (14) with the boundary conditions

uk+1(0) = u′k+1(0) = uk+1(1) = u′k+1(1) = 0

yields

uk+1(x) = η
k+1 pk+1,k+1(x)+η

k pk+1,k(x)+ · · ·+ pk+1,0(x)+ c0 qk+1(x;c0,γ) .

Therefore, (13) is true for all nonnegative integers.
Finally, in view of the expression (11) of Un(x;c0,γ), the theorem follows imme-

diately.

Remark 1. It is seen from Theorem 1 that, as γ → +∞, if the product η of c0 and γ

converges to a constant η0 then c0 = η/γ → 0; consequently, Un(x;c0,γ) converges
to
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η
n
0 pn(x)+η

n−1
0 pn−1(x)+ · · ·+η0 p1(x)+ p0(x) (15)

which does not depend on γ and c0.
It will be shown by minimizing the averaged residual error of the approximation

(11) that the product η of c0 and γ indeed converges to a constant as γ →+∞. There-
fore, the HAM can always give accurate series solutions to the problem (1)-(2), no
matter how large the value of γ is by choosing a proper value of c0 as demonstrated
in the following.

The averaged residual error of the approximation (11) with M sample points was
first proposed by Liao [10] and is defined by

E(c0,γ,n) =
1
M

M

∑
j=1

(N [Un(x j;c0,γ)])
2 , (16)

where x1,x2, . . . ,xM ∈ [0,1] are the sample points and N is the operator defined in
(10). In theory, the approximation (11) converges to the exact solution (5) if and only
if the averaged residual error E(c0,γ,n) converges to zero. In practice, one wants to
minimize E(c0,γ,n) by finding the optimal value of c0 which can be determined by
solving the equation

∂E(c0,γ,n)
∂c0

= 0.

One takes 20 equally-distributed sample points {0.05,0.10,0.15, . . . ,1.00} in the
interval [0,1] to calculate (16) for n = 10. For different values of γ , by minimizing
the averaged residual error, one obtains the corresponding optimal values of c0 as
in Table 2. It is seen that, as γ → +∞, the product of γ and c0 indeed converges to
a constant −58.8!

Table 2. Correspondence between γ and c0 when n = 10

γ 10E1 10E3 10E5 10E7 10E9 10E11
c0 –8.74E-1 –5.90E-2 –5.88E-4 –5.88E-6 –5.88E-8 –5.88E-10

To see how well the approximate solutions corresponding to the (γ,c0)-pairs in
Table 2 are, one calculates the relative errors for the equally-distributed sample points
{0.1,0.2, . . . ,0.9} in the interval [0,1]. The results are shown in Table 3.

Remark 2. It is interesting to notice that the relative error of the approximation for
each sample point converges to a fixed number as γ →+∞. The reason is as follows.
By Remark 1, as γ →+∞, Un(x;c0,γ) converges to (15) which does not depend on γ;
consequently, the relative error of the approximation for each sample point converges
to a fixed number.

It should be pointed out that the limit η0 of the product η is usually not fixed for
different order of approximation (11). For example, when n= 20 the limit η0 =−63.8
as shown in Table 4, and the corresponding relative errors are calculated in Table 5.
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Table 3. Relative errors of the approximation (11) when n = 10

x γ = 10E1 γ = 10E3 γ = 10E5 γ = 10E7 γ = 10E9 γ = 10E11
0.1 1.02E-11 2.08E-4 2.60E-4 2.61E-4 2.61E-4 2.61E-4
0.2 3.26E-11 3.82E-4 2.67E-4 2.66E-4 2.66E-4 2.66E-4
0.3 5.55E-11 5.71E-4 2.89E-4 2.85E-4 2.85E-4 2.85E-4
0.4 6.92E-11 7.04E-4 3.41E-4 3.37E-4 3.37E-4 3.37E-4
0.5 6.92E-11 7.04E-4 3.43E-4 3.39E-4 3.39E-4 3.39E-4
0.6 5.67E-11 5.78E-4 2.80E-4 2.76E-4 2.76E-4 2.76E-4
0.7 3.74E-11 3.85E-4 1.94E-4 1.92E-4 1.92E-4 1.92E-4
0.8 1.80E-11 2.11E-4 1.48E-4 1.46E-4 1.46E-4 1.46E-4
0.9 4.63E-12 9.39E-5 1.17E-4 1.17E-4 1.17E-4 1.17E-4

Table 4. Correspondence between γ and c0 when n = 20

γ 10E1 10E3 10E5 10E7 10E9 10E11
c0 –9.74E-1 –6.35E-2 –6.38E-4 –6.38E-6 –6.38E-8 –6.38E-10

Table 5. Relative errors of the approximation (11) when n = 20

x γ = 10E1 γ = 10E3 γ = 10E5 γ = 10E7 γ = 10E9 γ = 10E11
0.1 1.46E-14 7.42E-5 9.05E-5 9.10E-5 9.10E-5 9.10E-5
0.2 4.73E-14 1.89E-4 8.32E-5 8.19E-5 8.19E-5 8.19E-5
0.3 8.06E-14 3.15E-4 1.13E-4 1.10E-4 1.10E-4 1.10E-4
0.4 1.01E-13 3.90E-4 1.29E-4 1.25E-4 1.25E-4 1.25E-4
0.5 1.01E-13 3.88E-4 1.24E-4 1.21E-4 1.21E-4 1.21E-4
0.6 8.25E-14 3.20E-4 1.05E-4 1.03E-4 1.03E-4 1.03E-4
0.7 5.43E-14 2.12E-4 7.58E-5 7.40E-5 7.40E-5 7.40E-5
0.8 2.62E-14 1.04E-4 4.58E-5 4.51E-5 4.51E-5 4.51E-5
0.9 6.62E-15 3.36E-5 4.05E-5 4.08E-5 4.08E-5 4.08E-5

One thus concludes that accurate series solutions to the problem (1)-(2) can always
be obtained, no matter how large the value of γ is, by choosing a proper value of c0.
The HAM approximation (11) agrees very well with the exact solution (5) as shown
in Figure 1.

3. Solution to the sixth-order problem

The solution structure of the sixth-order problem is quite similar to the solution
structure of the fourth-order problem above. One first constructs the zeroth-order
deformation equation

(1− p)L [φ(x; p)−u0(x)] = pc0 N [φ(x; p)] where (17)

L [φ(x; p)] =
∂ 6φ(x; p)

∂x6 (18)
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u0(x) = x6 −
(
19+24e−7e2

)
x5

4e
+

(
23+22e−9e2

)
x4

2e

−
(
87+82e−39e2

)
x3

12e
+ x+1 (19)

N [φ(x; p)] =
∂ 6φ (x; p)

∂x6 − (1+ γ)
∂ 4φ (x; p)

∂x4 + γ
∂ 2φ (x; p)

∂x2 − γx (20)

Fig. 1. The 10th-order HAM approximation for γ = 109,c0 = 5.88×10−8. The solid line: exact
solution; the dot line: the HAM approximation

The initial approximation u0(x) is chosen in a similar way as in Section 2. Again,
following the standard procedure of the HAM, one obtains an nth-order approxima-
tion to the boundary value problem (3)-(4):

Vn(x;c0,γ) =
n

∑
m=0

um(x). (21)

For this approximation, one has the following:

Theorem 2. Let η = c0γ . Then Vn(x;c0,γ) can be expressed as

Vn(x;c0,γ) = η
n fn(x)+η

n−1 fn−1(x)+ · · ·+ f0(x)+ c0 g(x;c0,γ), (22)

where fn, fn−1, . . . , f0 and g are polynomials over R, deg(T,c0)≥ deg(T,γ) for every
term T in g, in case g ̸= 0.

It is seen that Theorem 1 and Theorem 2 look almost the same, except for the
coefficients of the powers of η and c0. The proof of Theorem 2 is omitted here since
it is quite similar to the proof of Theorem 1.

To see if the product η of c0 and γ converges to a constant as γ → +∞ when
minimizing the averaged residual error
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E(c0,γ,n) =
1
M

M

∑
j=1

(N [Vn(x j;c0,γ)])
2 , (23)

one takes 20 equally-distributed sample points {0.05,0.10,0.15, . . . ,1.00} in the
interval [0,1] to calculate (23) for n = 10. For different values of γ , by minimizing
the averaged residual error, one obtains the corresponding optimal values of c0 as in
Table 6.

Table 6. Correspondence between γ and c0 when n = 10

γ 10E1 10E3 10E5 10E7 10E9 10E11
c0 –9.20E-1 –8.98E-2 –1.32E-3 –1.29E-5 –1.29E-7 –1.29E-9

Remark 3. (1) One can see that, as γ →+∞, the product of γ and c0 indeed converges
to a constant η1 = −129. It is worth noticing that the constant is different from the
constant η0 = −58.8 in the fourth-order case above, and the convergence rate to η1
is slower than the rate to η0.
(2) In view of Theorem 2, as γ →+∞, Vn(x;c0,γ) thus converges to

η
n
1 fn(x)+η

n−1
1 fn−1(x)+ · · ·+η1 f1(x)+ f0(x) (24)

which does not depend on γ and c0.
(3) Therefore, one can expect that the relative error of the approximation for each
sample point converges to a fixed number as γ →+∞. It is indeed the case as shown
in Table 7, but the convergence rate is again slower than the fourth-order case.

Table 7. Relative errors of the approximation (21) when n = 10

x γ = 10E1 γ = 10E3 γ = 10E5 γ = 10E7 γ = 10E9 γ = 10E11
0.1 2.97E-16 1.34E-5 3.12E-5 2.90E-5 2.90E-5 2.90E-5
0.2 6.10E-16 2.47E-5 8.54E-5 6.83E-5 6.81E-5 6.81E-5
0.3 8.74E-16 2.73E-5 1.53E-4 1.10E-4 1.10E-4 1.10E-4
0.4 1.08E-15 2.89E-5 2.08E-4 1.44E-4 1.44E-4 1.44E-4
0.5 1.10E-15 2.82E-5 2.17E-4 1.49E-4 1.48E-4 1.48E-4
0.6 9.18E-16 2.45E-5 1.77E-4 1.22E-4 1.22E-4 1.22E-4
0.7 6.30E-16 1.97E-5 1.10E-4 7.96E-5 7.93E-4 7.93E-5
0.8 3.71E-16 1.50E-5 5.20E-5 4.16E-5 4.15E-5 4.15E-5
0.9 1.52E-16 6.86E-6 1.60E-5 1.49E-5 1.49E-5 1.49E-5

4. Explicit solution formulas for the general case

The techniques used in Sections 2 and 3 can be applied to general parametric
linear boundary value problems. Consider an Nth-order linear two-point boundary
value problem with one parameter γ
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L1[u(x)]+ f1(x)+ γ (L2[u(x)]+ f2(x)) = 0, (25)

u(a) = A0, u′(a) = A1, . . . , u(k)(a) = Ak, (26)

u(b) = B0, u′(b) = B1, . . . , u(N−k−2)(b) = BN−k−2, (27)

where L1 and L2 are Nth-order linear differential operators with polynomial coeffi-
cients, and f1 and f2 are polynomials over R.

As usual, one constructs the zeroth-order deformation equation

(1− p)L [φ(x; p)−u0(x)] = pc0 N [φ(x; p)] where (28)

L [φ(x; p)] =
∂ Nφ(x; p)

∂xN (29)

N [φ(x; p)] = L1[φ(x; p)]+ f1(x)+ γ (L2[φ(x; p)]+ f2(x)) (30)

and u0(x) is an initial guess satisfying the boundary conditions (26)-(27).
Again, following the standard procedure of the HAM, one obtains an nth-order

approximation to the boundary value problem (25)-(27):

Wn(x;c0,γ) =
n

∑
m=0

um(x). (31)

For this approximation, one has the following:

Theorem 3. Let η = c0γ . Then Wn(x;c0,γ) can be expressed as

Wn(x;c0,γ) = η
nrn(x)+η

n−1rn−1(x)+ · · ·+ r0(x)+ c0 d(x;c0,γ), (32)

where rn,rn−1, . . . ,r0 and d are polynomials over R, and for every term T in d,
provided d ̸= 0, deg(T,c0)≥ deg(T,γ).

We omit the proof of Theorem 3 since it is quite similar to the proofs of Theorems
1 and 2. Based on Theorem 3 and the methods used in Sections 2 and 3, one can solve
any problems of type (25)-(27).

5. Conclusion

By establishing an explicit formula for the resulting series solution given by the
homotopy analysis method, one can gain more insight into the solution structure of
the given parametric linear boundary value problem. However, to obtain an explicit
solution formula for a parametric nonlinear boundary value problem, substantial
work has to be done.
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