
Journal of Applied Mathematics and Computational Mechanics 2024, 23(2), 54-65
www.amcm.pcz.pl p-ISSN 2299-9965
DOI: 10.17512/jamcm.2024.2.05 e-ISSN 2353-0588

SLOW FLOW OF MICROPOLAR FLUID PAST AN IMMISCIBLE
MICROPOLAR FLUID SPHERE

Krishna Prasad Madasu, Nidhi Goyal

Department of Mathematics, National Institute of Technology, Raipur-492010
Chhattisgarh, India

madaspra.maths@nitrr.ac.in, kpm973@gmail.com, goyalnidhi.1408@gmail.com

Received: 14 March 2024; Accepted: 2 June 2024

Abstract. The Stokes axisymmetric flow of an incompressible micropolar fluid past an
another immiscible micropolar fluid sphere is studied analytically under small Reynolds
numbers. A spherical coordinate system is used to solve the Stokes equations for the
fluid velocities, pressures and microrotation vectors inside and outside the micropolar
fluid drop. The boundary conditions on the micropolar fluid drop surface are satisfied by
vanishing of a normal component of velocity inside and outside the micropolar fluid sphere,
tangential components of velocities are continuous, tangential components of stresses are
continuous, and the microrotation vector inside and outside the micropolar fluid sphere
vanishes. Numerical results for the drag force acting on the micropolar fluid drop are
obtained for various values of the relative viscosity of the fluid drop, micropolar parameters
(vortex viscosity parameters), and shear spin viscosity parameters. It is found that the drag
force exerted on the viscous drop in a micropolar fluid and the micropolar fluid drop in
a viscous fluid increase with an increase in the viscosity ratio. Additionally, the findings
demonstrate that the drag force acting on the micropolar drop in a micropolar fluid increases
as the viscosity ratio increases, and the drag force on the gaseous bubble is less than that of
a solid sphere. Well-known results are reduced, and comparisons are made with a classical
viscous-viscous droplet, a micropolar-viscous droplet and a viscous-micropolar droplet.
The present study has significant applications in natural, biological, and industrial processes,
such as sedimentation phenomena, liquid-liquid extraction, the study of blood flow, and the
rheology of emulsions.
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1. Introduction

The motion of a fluid droplet in a second immiscible fluid through a continu-
ous medium at low Reynolds numbers is of much interest in the fields of chemical,
biomedical, and environmental engineering and science. This study plays an impor-
tant role in natural and industrial processes such as raindrop formation, the mechanics
and rheology of emulsions, liquid-liquid extraction, motion of blood cells in an artery
or vein, extraction of crude oil from petroleum products and sedimentation phenom-
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ena. The steady state solution of slow viscous flow outside and inside a fluid sphere
is investigated analytically by Hadamard and Rybczynski [1, 2].

A well-accepted theory that accounts for an internal microstructure is the microp-
olar fluid theory initiated by Eringen [3]. Rao and Rao [4] examined the slow flow
of a micropolar fluid past a rigid sphere. They found the drag force on the sphere
is more in the polar fluid than that of viscous fluid. Ramkissoon and Majumdar [5]
derived a general expression for the drag force using axisymmetric point force.

The cases where one of the fluids is non-Newtonian and other is Newtonian fluid
are as follows. Using the spin vorticity relation, Niefer and Kaloni [6] studied the
flow of a viscous fluid past a micropolar fluid sphere and vice-versa. Ramkissoon [7]
obtained the exact solution for the translation of a Newtonian fluid sphere through
a micropolar fluid using a no-spin condition on the microrotation. Saad [8] extended
the work [6] by considering the bounded medium. Faltas and Saad [9] investigated
the motion of a viscous fluid sphere in a micropolar fluid perpendicular to a plane wall
and vice-versa using the boundary collocation technique. Ramkissoon and Majum-
dar [10] considered the Stokes flow of a micropolar fluid past a viscous fluid spheroid
whose shape deviates slightly from that of a sphere. Later, Madasu and Kaur [11,12]
continued the work by considering the non-zero microrotation condition. Gomathy
et al. [13] investigated the creeping flow of micropolar fluid past a micropolar fluid
using continuity of velocity and pressure. The following articles are the cases when
the two fluids are non-Newtonian. Srinivasacharya and Rajyalakshmi [14] investi-
gated the slow flow of an incompressible micropolar fluid past a porous sphere.

Recently, Khanukaeva [15] discussed the flow of a micropolar fluid through
a spherical cell, consisting of a solid core, porous layer and liquid envelope that
is modeled using coupled micropolar and Brinkman-type equations. Yadav et al. [16]
studied the Poiseuille flow of micropolar-Newtonian fluid through concentric pipes
filled with a porous medium. Selvi et al. [17] examined the flow around a Reiner-
-Rivlin liquid sphere placed in an aqueous medium. El-Sapa [18] examined the effect
of a magnetic field on the slow motion of a microstretch fluid droplet in a microstretch
fluid. El-Sapa [19] studied cell models for the axisymmetric creeping flow of micro-
polar fluid past a porous sphere filled with micropolar fluid. Yadav et al. [20] inves-
tigated entropy production for the immiscible nature of micropolar and Newtonian
viscous fluid within a channel. Salem et al. [22] examined the migration of a spher-
ical viscous droplet along the axis of cylindrical tube filled by micropolar fluid and
the related problem of spherical micropolar droplet in a viscous fluid-filled cylin-
drical tube. The effect of the spherical slip cavity on a spherical viscous droplet in
a micropolar fluid, and spherical micropolar droplet in a viscous fluid is investigated
respectively in [23, 24]. Alharbi and Salem [25] studied the effect of a tangential slip
and spin slip conditions on steady motion of a micropolar drop within a concentric
spherical cavity containing a micropolar fluid.

The aim of this paper is to extend to the previous study [6] the case where the
interior and exterior of the fluid sphere is filled with micropolar fluid. Furthermore,
calculation of the resistant force exerted on a micropolar fluid sphere in an unbounded
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micropolar fluid, is the key value to be determined in the current investigation. To the
best of the author’s knowledge, the idea of the current investigation was not done
until now. The variation of the drag force versus the viscosity ratio and micropolarity
parameters are presented graphically and discussed. Some previously published well-
known results are also deduced from the present analysis. The knowledge of this type
of phenomena is important in understanding liquid-liquid, solid-liquid, gas-liquid
systems.

2. Problem formulation

Consider the steady axisymmetric flow of an incompressible micropolar fluid past
an immiscible micropolor fluid sphere that is held fixed in a uniform stream of veloc-
ity U (Fig. 1). The external region and the internal region are denoted by regions I
and II, respectively. The following assumptions considered the fluid inside the sphere
as a micropolar fluid, and the fluid in the surrounding medium was considered to
be a micropolar fluid. The flow is steady, axisymmetric, there is no interfacial mass
transfer (the radial velocity is zero at interface), there are no surface-active materials,
and the shape of the fluid sphere is permanently spherical.

Fig. 1. Physical situation of the problem

The equations of motion for the exterior and interior regions of the fluid sphere are
the equations governing the steady flow of an incompressible micropolar fluid under
the Stokesian assumption with the absence of body force and body couple [3].

∇ · q⃗(i) = 0, (1a)

∇p(i)+(µi +κi)∇×∇× q⃗(i)−κi ∇× ν⃗
(i) = 0, (1b)

κi ∇× q⃗(i)−2κi ν⃗
(i)− γi ∇×∇× ν⃗

(i)+(αi +βi + γi)∇
(

∇ · ν⃗ (i)
)
= 0, i = 1,2,

(1c)

where q⃗(i), ν⃗
(i) and p(i) are velocity vector, microrotation vector and pressure, respec-

tively. µi is the viscosity coefficient of the classical viscous fluid and κi, αi, βi and γi
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are the new viscosity coefficients for the micropolar fluids. These constants conform
to the usual inequalities:
κi ≥ 0; 2µi +κi ≥ 0; γi ≥ 0; |βi| ≤ γi; 3αi +βi + γi ≥ 0, i = 1,2.

The equations for the stress tensor t(i)i1 j1 and the couple stress tensor m(i)
i1 j1 are

t(i)i1 j1 =−p(i) δi1 j1 +µi (q
(i)
i1, j1 +q(i)j1,i1)+κi (q

(i)
j1,i1 − εi1 j1 m1 ν

(i)
m1), i = 1,2, (2)

m(i)
i1 j1 = αi ν

(i)
m1,m1 δi1 j1 +βi ν

(i)
i1, j1 + γi ν

(i)
j1,i1 , i = 1,2, (3)

where the comma denotes the partial differentiation, δi1 j1 and εi1 j1 m1 are the Kro-
necker delta and the alternating tensor, respectively.

Let (r,θ ,φ) denote a spherical polar co-ordinate system. Since the flow of the
fluid is in the meridian plane and the flow is axially symmetric, all the quantities are
independent of φ . Hence, we assume the velocity and microrotation vectors as

q⃗(i) = q(i)r (r,θ) e⃗r +q(i)
θ
(r,θ) e⃗θ , i = 1, 2. (4)

ν⃗
(i) = ν

(i)
φ
(r,θ), i = 1, 2. (5)

Let ψ
(i), i= 1,2 denote the Stokes stream functions of the exterior and interior regions

of the fluid sphere. Then the velocity components in terms of stream functions are

q(i)r =
1
r2

∂ψ(i)

∂ζ
, q(i)

θ
=

1

r
√

1−ζ 2

∂ψ(i)

∂ r
, i = 1, 2. (6)

where ζ = cosθ .
Introducing the following nondimensional variables [14]

r = ar̃, ψ
(i) =Ua2

ψ̃
(i), p(i) =

µ1U
a

p̃(i), ν
(i)
φ

=
U
a

ν̃
(i)
φ

.

After elimination of the pressure p(i) and the microrotation vector ν
(i)
φ

from Eq. (2),
we obtain linear partial differential equations for the stream functions as

E4 (E2 − l2
i
)

ψ
(i) = 0, i = 1, 2. (7)

and microrotation vectors are given by

ν
(i)
φ

=
1

2r
√

1−ζ 2

(
E2

ψ
(i)+

(2+χi)

χi
l−2
i E4

ψ
(i)
)
, i = 1, 2. (8)

where

l2
i =

a2κi(2+χi)

γi(1+χi)
, χi =

κi

µi
are the micropolar parameters, i = 1, 2,
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and

E2 =
∂ 2

∂ r2 +
1−ζ 2

r2
∂ 2

∂ζ 2 is the Stokesian operator.

3. Boundary conditions

In order to get the exact solution to the problem, we need to first determine
the stream functions ψ

(1) and ψ
(2). Then, the velocity and microrotation vectors

outside and inside the fluid sphere can be determined. On the liquid-liquid interface,
we assume the mutual impenetrability, continuity of tangential velocity and tangential
stresses, and no-spin condition on the microrotation [6, 12]. Therefore, the boundary
conditions are as follows:

q(1)r = 0, (9)

q(2)r = 0, (10)

q(1)
θ

= q(2)
θ
, (11)

t(1)rθ
= t(2)rθ

, (12)

ν
(1)
φ

= 0, (13)

ν
(2)
φ

= 0. (14)

4. Solution of the problem

The solution of equation Eqs. (7) are given by [6–8]

ψ
(1) =

[
r2 +Ar−1 +Br+C

√
r K3/2(l1 r)

]
ϑ2(ζ ), (15)

ψ
(2) =

[
E r2 +F r4 +G

√
r I3/2(l2 r)

]
ϑ2(ζ ), (16)

Substituting Eq. (15) and Eq. (16) in Eq. (8), we get microrotation components as

ν
(1)
φ

=
1

r
√

1−ζ 2

[
−Br−1 +C l2

1
(1+χ1)

χ1

√
r K3/2(l1 r)

]
ϑ2(ζ ), (17)
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ν
(2)
φ

=
1

r
√

1−ζ 2

[
5F r2 +Gl2

2
(1+χ2)

χ2

√
r I3/2(l2 r)

]
ϑ2(ζ ). (18)

The boundary conditions in terms of stream function ψ
(i), i = 1,2 on the surface

of sphere r = 1 lead to the following:

∂ ψ(1)

∂ζ
= 0, (19)

∂ ψ(2)

∂ζ
= 0, (20)

∂ ψ(1)

∂ r
=

∂ ψ(2)

∂ r
, (21)

(2+χ1)

[
2r

∂

∂ r

[
1
r

(
∂ψ(1)

∂ r

)]
−E2

ψ
(1)− l−2

1 E4
ψ

(1)

]
=

(2+χ2)σ

[
2r

∂

∂ r

[
1
r

(
∂ψ(2)

∂ r

)]
−E2

ψ
(2)− l−2

2 E4
ψ

(2)

]
, (22)

where σ =
µ2

µ1
is the classical ratio of viscosities between the internal and external

fluids.
The case of flow past a solid sphere in a micropolar fluid is obtained when the
viscosity of the drop becomes infinity (σ → ∞), the case of micropolar fluid past
a micropolar fluid sphere with the same viscosity as the surrounding medium (coales-
cence) (σ = 1), and as for the case of motion of a spherical gas bubble rising slowly
in a micropolar fluid when the viscosity approaches zero (σ = 0).

Applying the boundary conditions Eqs. (19)-(22), Eq. (17), and Eq. (18), we get

A+B+C K3/2(l1) =−1, (23)

E +F +GI3/2(l2) = 0, (24)

−A+B−C
(
K3/2(l1)+ l1K1/2(l1)

)
−2E−4F+G

(
I3/2(l2)− l2I1/2(l2)

)
=−2, (25)

(2+χ1)(3A+ l1K5/2(l1)C)−σ(2+χ2)(3F − l2K5/2(l2)G) = 0, (26)

−B+C l2
1
(1+χ1)

χ1
K3/2(l1) = 0, (27)
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−5F −Gl2
2
(1+χ2)

χ2
I3/2(l2) = 0. (28)

Equations (23)-(28) are solved to get the six arbitrary constants A, B, C, E, F and G.
The expressions of arbitrary constants are cumbersome and lengthy, so they are not
presented here.

5. Drag force on the micropolar-micropolar fluid drop

The drag force F acting on the micropolar fluid drop in an unbounded immiscible
micropolar fluid can be evaluated by using the formula

F = 2π a2
∫

π

0
r2
(

t(1)rr cosθ − t(1)rθ
sinθ

)
|r=1 sinθdθ , (29)

where

t(1)rr = (2+χ1)

[
3r−4A+

3
2

r−2B+ r−3/2l1K5/2(l1r)C
]

ζ ,

t(1)rθ
=

(2+χ1)√
1−ζ 2

[
3r−4A+ r−3/2l1K5/2(l1r)C

]
ϑ2(ζ ),

F = 2π a µ1U (2+χ1)B, (30)

F =−2π a µ1U (2+χ1)
[
3T1 l1 (χ1 +1)

(
ξ1σ χ

2
2 +(ξ2 (χ1 +2)+ξ3σ) χ2

+2T2l2
2 (χ1 +3σ +2)

)]
∆
−1, (31)

where

∆ = ξ1σ
(
(ξ2χ1 +2T1l1)χ

2
2 +
(
ξ2ξ5χ

2
1 +(ξ3ξ4σ +ξ2ξ6)χ1

+2T1l1(ξ3σ +3ξ2))χ2 +2T2l2
2(ξ5χ

2
1 +(3ξ4σ +ξ6)χ6 +6T1l1(σ +1)),

ξ1 = 3T2l2
2 +5T4l2 −15T2, ξ2 = 2T2l2

2 −5T4l2 +15T2,
ξ3 = 9T2l2

2 +10T4l2 −30T2, ξ4 = 2T1l1 −T3,
ξ5 = 3T1l1 −T3, ξ6 = 9T1l1 −2T3,
T1 = K3/2(l1), T2 = I3/2(l2),
T3 = K1/2(l1), T4 = I1/2(l2),
T5 = K5/2(l1), T6 = I5/2(l2).

Case I: Viscous drop in a micropolar fluid
If χ2 → 0 and γ2 → 0 in Eq. (31), we get the drag force acting on the viscous fluid
drop in an infinite micropolar fluid as
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F =− 6π a µ1U (2+χ1)(1+ l1)(1+χ1)(2+3σ +χ1)

3l1(1+χ1)(2+2σ +χ1)+(2+χ1)(3+3σ +2χ1)
, (32)

This agrees with the result of Niefer and Kaloni [6] and Ramkissoon [7].

Case II: Micropolar fluid drop in a viscous fluid
If χ1 → 0 and γ1 → 0 in Eq. (31), we get the drag force acting on the micropolar fluid
drop in an unbounded viscous fluid as

F = 4π a µ1U
∆1

∆2
, (33)

where

∆1 = 3(l2
2Σ1 +15Σ2)σ χ

2
2 +
(
3(l2

2Σ3 +30Σ2)σ −6(l2
2Σ4 +15Σ2)

)
χ2

−6l2
2Σ2(3σ +2),

∆2 = 2(l2
2Σ1 +15Σ2)σ χ

2
2 +
(
2(l2

2Σ3 +30Σ2)σ −6(l2
2Σ4 +15Σ2)

)
χ2

−6l2
2Σ2(σ +1),

Σ1 = 2 sinh(l2)+3l2 cosh(l2), Σ2 = sinh(l2)− l2 cosh(l2),
Σ3 = sinh(l2)+9l2 cosh(l2), Σ4 = 7 sinh(l2)−2l2 cosh(l2),

which agrees with the published result of Saad [8].

Case III: Solid sphere
If σ → ∞ in Eq. (33), we get the drag force acting on the solid sphere through
a micropolar fluid

F =−6π a µ1U (2+χ1)(1+χ1)(1+ l1)
2l1(1+χ1)+2+χ1

, (34)

which agrees with the result obtained by Rao and Rao [4], and Ramkissoon and
Majumdar [5].

Case IV: Fluids in both the regions are Newtonian
If χ1 → 0, γ1 → 0, χ2 → 0, and γ2 → 0 in Eq. (31), the fluid inside and outside
the sphere is Newtonian. The drag force exerted on the viscous fluid sphere by the
surrounding viscous fluid is

F =−2π aU µ1 (3σ +2)
σ +1

, (35)

which agrees with the well-known result derived by Hadamard [1] and Rybczynski
[2]. Equation (35) degenerates to the case of motion of a no-slip sphere (Stokes’ law)
when the viscosity of the drop is infinite and as for the case of motion of a perfect-slip
gas bubble when the viscosity approaches zero.
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Case V: Fluid sphere of vanishing viscosity
In this case, µ2 = 0 in Eq. (32), and it reduces to

F =−6π a µ1U (2+χ1)(1+χ1)(1+ l1)
3l1(1+χ1)+3+2χ1

, (36)

It represents the drag of a gaseous bubble rising slowly through a micropolar fluid.
In addition, if χ1 → 0, we get the gaseous bubble rising slowly through a viscous
fluid [18]

F =−4π a µ1U. (37)

6. Results and discussion

The drag coefficient FN =
F

−6π a µ1U
is a function of various parameters:

(i) Relative viscosity of the fluid drop σ =
µ2

µ1
(0 ≤ σ < ∞) [6, 21].

(ii) Micropolar parameters (vortex viscosity parameters) χ1 =
κ1

µ1
, χ2 =

κ2

µ2
(0 ≤ χ1,

χ2 < ∞) [3–6].
(iii) Shear spin viscosity parameters γ1 and γ2 (0 ≤ γ1,γ2 < ∞) [3–6].
The variation of the drag coefficient FN with the classical ratio σ of viscosities
between the interior and exterior of the fluid sphere are shown in Figures 2 and 3
for various values of micropolarity parameters and shear spin viscosity parameters.

It is observed that the drag force acting on the micropolar fluid sphere in a mi-
cropolar fluid increases as the viscosity ratio increases. As expected, the drag force
exerted on the viscous drop in a micropolar fluid and micropolar fluid in a viscous
drop increases with an increase in the viscosity ratio. When σ → 0, FN represents
the drag of a gaseous bubble rising slowly in a micropolar fluid. When σ → ∞,
FN represents the drag of a solid sphere in a micropolar fluid. Our numerical result
for the case of solid sphere agrees with the result obtained by Rao and Rao [4]. Also,
the drag on a gaseous bubble is less than the drag on a solid sphere [18].

In Tables 1 and 2, the variation of the drag coefficient FN for different values of
micropolarity parameters χ1 and χ2, taking viscosity ratio for four different cases
when σ = 0 (fluid sphere of vanishing viscosity), σ = 1 (fluid sphere with viscosity
equal to that of the surrounding medium), σ = 10 (fluid sphere with viscosity unequal
to that of the surrounding medium), and σ → ∞ (solid sphere), respectively. If the
micropolarity parameters χ1 → 0, and χ2 → 0 i.e., both the fluids of interior and
exterior of the fluid sphere are Newtonian, it is seen that the drag coefficient increases
as the viscosity ratio increases.
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(a) for varying micropolarity parameter χ1
outside the fluid sphere, other parameters

γ1

µ1a2 = 0.4,
γ2

µ2a2 = 0.4, χ2 = 2 are fixed

(b) for varying micropolarity parameter χ2
inside the fluid sphere, other parameters

γ1

µ1a2 = 0.4,
γ2

µ2a2 = 0.4, χ1 = 2 are fixed

Fig. 2. Variation of drag coefficient FN versus viscosity ratio σ

(a) for varying micropolarity parameter χ1, other

parameters
γ1

µ1a2 = 0.4, γ2 → 0, χ2 → 0 are fixed

(b) for varying micropolarity parameter χ2, other

parameters
γ2

µ2a2 = 0.4, γ1 → 0, χ1 → 0 are fixed

Fig. 3. Variation of drag coefficient FN versus viscosity ratio σ
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Table 1. Drag coefficient FN for the cases of micropolar-viscous droplet(
γ1

µ1a2 = 0.4,χ2 → 0,γ2 → 0
)

and viscous-micropolar droplet
(

γ2

µ2a2 = 0.4,χ1 → 0,γ1 → 0
)

FN FN
χ1 σ → 0 σ = 1 σ = 10 σ → ∞ χ2 σ → 0 σ = 1 σ = 10 σ → ∞

0 0.666667 0.833333 0.969697 1.0 0 0.666667 0.833333 0.969697 1.0
1 1.06017 1.2877 1.56198 1.63959 1 0.666667 0.896933 0.985719 1.0
3 1.77597 2.04888 2.55335 2.75428 3 0.666667 0.93729 0.992451 1.0
5 2.47607 2.77001 3.47178 3.83128 5 0.666667 0.953152 0.994637 1.0
7 3.17006 3.47616 4.34817 4.89378 7 0.666667 0.961942 0.995758 1.0

Table 2. Drag coefficient FN for the cases of micropolar-micropolar droplet(
γ1

µ1a2 =
γ2

µ2a2 = 0.4,χ2 = 3
)

and micropolar-micropolar droplet
(

γ1

µ1a2 =
γ2

µ2a2 = 0.4,χ1 = 3
)

FN FN
χ1 σ → 0 σ = 1 σ = 10 σ → ∞ χ2 σ → 0 σ = 1 σ = 10 σ → ∞

0 0.666668 0.93729 0.992451 1.0 0 1.77597 2.04888 2.55335 2.75428
1 1.06017 1.48672 1.61954 1.63959 1 1.77597 2.22954 2.65283 2.75428
3 1.77598 2.38782 2.699 2.75428 3 1.77597 2.38782 2.699 2.75428
5 2.47607 3.21395 3.72665 3.83128 5 1.77597 2.46363 2.71461 2.75428
7 3.17006 4.0015 4.72673 4.89378 7 1.77597 2.50981 2.72274 2.75428

7. Conclusions

An analytical solution for the problem of Stokes flow of a micropolar fluid past
a micropolar fluid sphere is obtained. The problem is focused on the case when
two fluid phases have a microstructure nature. On the micropolar-micropolar liquid
interface, negilible mass transfer, continuity of tangential stresses and velocities,
vanishing of microrotation vectors are used. The drag force is calculated, and the
dependence of the drag force on the micropolarity parameters χ1, χ2 and the classi-
cal viscosity ratio σ is depicted graphically. The drag force exerted on the viscous
drop in a micropolar fluid and micropolar fluid drop in a viscous fluid increases with
an increase in the viscosity ratio. The drag force acting on the micropolar drop in
a micropolar fluid increases as the viscosity ratio increases. The current work has
significant applications in natural, biological, and industrial processes, such as sedi-
mentation phenomena, liquid-liquid extraction, the study of blood flow, and the rhe-
ology of emulsions. Finally, the possible prospects for future studies of the subject
may be proposed by considering spheroidal geometry [11, 12] and cell models [8].
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