
Journal of Applied Mathematics and Computational Mechanics 2024, 23(2), 79-92
www.amcm.pcz.pl p-ISSN 2299-9965
DOI: 10.17512/jamcm.2024.2.07 e-ISSN 2353-0588

PROOF OF EQUIVALENCE OF SEMANTIC METHODS
FOR A SELECTED DOMAIN-SPECIFIC LANGUAGE

William Steingartner1, Valerie Novitzká1, Wolfgang Schreiner2

1 Faculty of Electrical Engineering and Informatics, Technical University of Košice
Košice, Slovakia

2 Research Institute for Symbolic Computation, Johannes Kepler University
Linz, Austria

william.steingartner@tuke.sk, valerie.novitzka@tuke.sk, wolfgang.schreiner@risc.jku.at

Received: 6 December 2023; Accepted: 17 February 2024

Abstract. This paper focuses on the formal semantics of programming languages, with
a specific focus on Domain-Specific Languages (DSLs). It introduces the Robot DSL,
characterized by total semantic functions, an infinite network size, and an obstacle-free
environment. The study explores denotational and natural semantics, aiming to define
and prove their equivalence. This work contributes to the understanding of programming
languages with unique features, laying the groundwork for future developments in language
design and formal semantics.

MSC 2010: 68Q55, 00A71, 97P20, 97Q99
Keywords: denotational semantics, domain-specific language, language design, natural
semantics, proof of equivalence, semantic function, structural induction

1. Introduction

In the field of formal semantics, the study and analysis of programming languages
have been crucial in advancing our understanding of computational processes. This
paper provides an overview with a particular focus on domain-specific languages.
With this article, we follow up on previous research to delineate the environment of
domain-specific languages and their role in shaping different computing domains.

A domain specific language is a programming language with a higher level of
abstraction optimized (tailored) for a specific class of problems [1]. A DSL uses the
concepts and rules from the field or domain. A domain specific language is usually
less complex than a general-purpose language, although the boundary is not clear as
it could be [2]. DSLs offer significant value as they simplify programming compared
to traditional libraries, enhancing overall programmer productivity – an invaluable
asset. Additionally, well-designed DSLs can facilitate improved communication with
domain experts, addressing a key challenge in software development [3]. To provide
a structured framework and the best practices for designing and implementing these
specialized languages, design guidelines for DSLs were formulated [4]. In this paper,

80 W. Steingartner, V. Novitzká, W. Schreiner

we delve into the specific attributes of an artificial DSL we call Robot (for inter-
ested reader, more examples and the state of the art in domain-specific languages
in real robotics can be found in [5]). This language is characterized by the use of total
semantic functions, an infinite size of network (for simplicity) and the absence of
obstacles, which opens the way for interesting possibilities in programming
paradigms, especially in future research, considering the possibilities of its extension
and thus and approximation to a real language. The research includes an analysis
of the denotational semantics of the Robot language, offering insight into its mathe-
matical underpinnings. Furthermore, examining the inherent semantics of Robot pro-
vides a more intuitive understanding of a kind of operational semantics. The denota-
tional approach to this language was defined in [6]; we extended the pool of semantic
methods by defining the natural semantics in [7].

Our goal is to show how to define those two semantic methods for the selected
domain-specific language. For the execution of n-step statements, we present three
ways to define denotational and natural semantics. We verify the correctness of our
approaches by proving the equivalence of these two semantic methods for Robot.
We focus on the mentioned approach so that it is easy, especially for students.
We plan to apply it in teaching such that students learn to use the proof of equiv-
alence for semantic methods.

By establishing the equivalence between different forms of semantics, we aim to
contribute to the formal underpinnings of programming languages and deepen our
comprehension of the intricacies associated with characteristics such as an infinite
network and a obstacle-free environment. This exploration seeks to provide a foun-
dation for future advances in language design and formal semantics.

The paper is organized as follows. In Section 2, we present a basic definition of
the language Robot. Section 3 contains the definition of semantic domains and the
representation of the concept of state. In Section 4, the basics of the denotational
semantics, and in Section 5, the basics of the natural semantics of our language are
introduced. Section 6 is the core of the paper, and it contains the proof of equivalence
of both methods. Section 7 concludes our paper.

2. The definition of the language

In this section, we introduce the formal syntax of the language Robot, serving
as a concrete example for illustrating the process of defining the formal semantics.
This language is a simple domain-specific language that enables the robot to move
across a two-dimensional orthogonal grid. The simplicity and clarity of the Robot
language make it an ideal illustration for teaching the formal definition of DSLs,
particularly within our mandatory course, Semantics of Programming Languages.

The actual position of the robot is determined by two coordinates x and y.
The robot can move in the directions left, right, up, and down. For specifying the
syntax, we need the following syntactic domains:

Proof of equivalence of semantic methods for a selected domain-specific language 81

n ∈ Num — strings of digits (numerals),
d ∈ Dir — directions of movement,
S ∈ Statm — statements.

The elements of the syntactic domain Num are strings of digits (numerals). This is
from the semantics’s point of view, a trivial syntactic domain without inner structure.

The structure of directions is defined by the production rule

d ::= left | right | up | down

and we define the structure of statements as follows:

S ::= d | d n | reset | skip | S;S.

Here

• d represents the movement of the robot by one step in the given direction;
• d n represents the movement of the robot by n steps in the given direction;
• reset defines the movement to the starting position;
• skip is the empty statement;
• S;S is a sequence of statements.

3. Semantic domains and semantic functions

Semantic domains are the sets containing meanings of program phrases. First,
we define the semantic domains and then the semantic functions.

The basic semantic domain is the set Z of integers. The set Point expresses
the position of the robot by its coordinates:

Point = Z×Z (1)

where any element p ∈ Point has the form of an ordered pair p = [x,y] with the
first coordinate x and the second coordinate y. We consider a net of infinite size and
we do not assume any obstacle in it yet.

To express a move in a particular direction, we can use the projections

πi : Z×Z → Z

for i = 1,2. Let p = [x,y]. Then π1(p) = x and π2(p) = y.
The set Point can be considered as the state space of the robot. We denote the

starting position of the robot by

p∗ = [x0,y0]

that is determined by the user. The meaning of the language constructions is defined
by the semantic functions. We define the semantic function J K for strings of numerals

82 W. Steingartner, V. Novitzká, W. Schreiner

J K : Num → Z (2)

from strings of digits to integers by JnK = n, where n ∈ Z denotes the integer repre-
sented by numeral n in the usual way (as for instance in [8]).

4. Denotational semantics of Robot

Denotational semantics [9] describes a program’s meaning by semantic domains
and functions between them. Depending on the starting position of the robot, deno-
tational semantics provides its target position after the execution of a program.

The denotation of statements we define by the semantic function [6]

J Kds : Statm → (Point → Point) ,

which defines how a position of the robot is being changed. The subscript ds identi-
fies the denotational semantic function. We assume in this present version that J Kds
is totally defined; in later extensions of the language Robot, it could become partial.

Let p = [x,y] be a position before executing a statement. We define the deno-
tational semantics of the one-step statements, the sequence of statements and the
special statements as follows:

JdKds[x,y] =

[x⊖1,y], if d = left,
[x⊕1,y], if d = right,
[x,y⊖1], if d = down,
[x,y⊕1], if d = up,

JresetKds[x,y] = [x0,y0],

JskipKds[x,y] = [x,y],

JS1;S2Kds = JS2Kds ◦ JS1Kds.

(3)

The notation JdKds[x,y] indicates a one-step movement in a particular direction.
For the statements with n steps, we introduce three possible approaches for how to
define denotational semantics for d n. In these definitions, we assume n ≥ 0, where
the case n = 0 serves only for defining semantics. The following equalities hold in all
definitions:

Jd 0Kds[x,y] = JskipKds[x,y], (4)

Jd 1Kds[x,y] = JdKds[x,y]. (5)

Proof of equivalence of semantic methods for a selected domain-specific language 83

Ids The first approach is direct; it uses only the semantics of n:

Jleft nKds[x,y] = [x⊖ JnK,y],
Jright nKds[x,y] = [x⊕ JnK,y],
Jup nKds[x,y] = [x,y⊕ JnK],
Jdown nKds[x,y] = [x,y⊖ JnK].

(6)

IIds The second approach defines the denotational semantics using rewriting:

Jd nKds p = Jd (n−1)Kds(JdKds p) (7)

for JnK > J0K (where Jd 0Kds is defined by equation (4)). The first step JdKds p
of a move is performed, and the following n−1 steps are repeatedly executed.

IIIds The third approach is inductive definition of the semantics. It uses the following
equivalence:

Jd nKds ≡ JdKJnK
ds .

Then we can define the semantics of n-steps movements as follows:

JdK0
ds p = p,

JdKn+1
ds p = JdKds(JdKn

ds p).
(8)

5. Natural semantics of Robot

Natural semantics is a kind of operational semantics, sometimes called the seman-
tics of big steps. This method was defined by Kahn in [10]. Its aim is to describe
how states are changed after the execution of the statements, and it is mostly used for
imperative languages. However, it could be applied also in the area of domain-specific
languages. The meaning of the statements is specified by a transition system, and
particular steps are expressed as transition relations.

Consider the syntax of Robot introduced in Section 2. The semantics of numerals
is defined as in (2). The state space is the semantic domain Point of robot’s positions
defined in (1).

The basic notion of natural semantics for the language Robot is a configuration
(an ordered tuple) ⟨S, p⟩ expressing that a statement S will be executed in a state
p = [x,y], i.e. in a position [x,y] ∈ Point. The execution of a statement S is described
by a transition relation ⟨S, p⟩ → p′ where p′ is a position of robot after execution of
a statement S in a state p.

For natural semantics, we introduce the semantic function J Kns as:

J Kns : Statm → (Point → Point)

defined by

84 W. Steingartner, V. Novitzká, W. Schreiner

JSKns p =

{
p′, if ⟨S, p⟩ → p′,
⊥, otherwise.

The index ns indicates the natural semantic function.
Function for natural semantics for the statements is defined by the derivation rules

of the following form [8]:

⟨S1, p1⟩ → p2, . . . ,⟨Sn, pn⟩ → p′

⟨S, p1⟩ → p′
(ns-name)

where S1, . . . ,Sn are substatements of S, the statement S starts its execution in a state
p1 and ends in a state p′. The states p2, . . . , pn are the intermediate states during
the execution of S. If a rule has no assumption, it is an axiom.

First, we define the natural semantics for the one-step moves, the sequence of
statements and the special statements:

Let p = [x,y]. Then

⟨left, [x,y]⟩ → [x⊖ J1K,y], ⟨down, [x,y]⟩ → [x,y⊖ J1K],
⟨right, [x,y]⟩ → [x⊕ J1K,y], ⟨up, [x,y]⟩ → [x,y⊕ J1K. (9)

For the special statements:

⟨skip, [x,y]⟩ → [x,y],
⟨reset, [x,y]⟩ → [x0,y0].

(10)

For a sequence of statements S = S1;S2:

⟨S1, p⟩ → p′, ⟨S2, p′⟩ → p′′

⟨S1;S2, p⟩ → p′′ (11)

Now we define the semantics of movements n steps in three ways introduced
for denotational semantics.
Ins Move of n steps directly is defined by the following axioms:

⟨left n, [x,y]⟩ → [x⊖ JnK,y],
⟨right n, [x,y]⟩ → [x⊕ JnK,y],
⟨down n, [x,y]⟩ → [x,y⊖ JnK],
⟨up n, [x,y]⟩ → [x,y⊕ JnK].

(12)

IIns Using rewriting (for JnK ≥ J0K):

⟨d (n−1), p⟩ → p′ ⟨d, p′⟩ → p′′

⟨d n, p⟩ → p′′

⟨d 0, p⟩ → p

(13)

Proof of equivalence of semantic methods for a selected domain-specific language 85

IIIns An inductive definition for the move of n step needs the following transcript of
the form of the transitions. It enables us to define natural semantics of n-steps
moves inductively. Therefore, we introduce a new auxiliary rule:

⟨d,n, p⟩ → p′

⟨d n, p⟩ → p′

for transcription of the configurations. Then we can define the semantics
inductively as follows:

⟨d,0, p⟩ → p,

⟨d,n, p⟩ → p′ ⟨d,1, p′⟩ → p′′

⟨d,n+1, p⟩ → p′′

(14)

6. Equivalence between denotational and natural semantics of Robot

The semantics of a program must be unambiguous, independent of the semantic
method used. Therefore the aim of this paper is to prove the equivalence of deno-
tational and natural semantics of the language Robot defined in Sections 4 and 5.
We formulate the following theorem:
Theorem: Let J Kds be the denotational semantic function for Robot and let J Kns be
the natural semantic function for this language. Then, for every statement S of Robot,
we have

JSKds = JSKns.

Proof. The functions J Kds and J Kns are the elements of the ordered set

(Point → Point,⊑),

where ⊑ is the ordering relation (see e.g. [8]). To show that two elements of this
ordered set are equal, we need to show:

J Kds ⊑ J Kns, and J Kns ⊑ J Kds.

That means, for each statement S, we need to prove the next two implications:

1. if JSKds p = p′, then it exists a transition ⟨S, p⟩ → p′ in natural semantics;

2. if ⟨S, p⟩ → p′ is valid in natural semantics, then JSKds p = p′.

We will prove both implications for each statement of the language Robot. For n-step
statements (d n), the proof will follow according to the scheme in Figure 1. When we
prove the equivalence of II and I and II and III, we do not need to prove the equiv-
alence of I and III, because the properties of equivalence imply that it is transitive.

86 W. Steingartner, V. Novitzká, W. Schreiner

Ids

II ds

III ds

Ins

II ns

III ns

i)

ii)

iii)

iv)

v)

Fig. 1. A proof scheme for n-step statements

1. We prove the first implication. Let S be a statement executed in a state p = [x,y].
To prove this implication, we need to verify that for the denotational semantics of
a statement S executed in a source state p there exists a transaction in natural seman-
tics for S executed in p, providing the same final state. We prove it for each statements
and the combinations Ids–IIIds of semantic definitions according to Figure 1.

a) The proof for special statements is trivial:

if JresetKds p = p∗ then there is a transition ⟨reset, p⟩ → p∗,
if JskipKds p = p then there is a transition ⟨skip, p⟩ → p.

b) One-step moves. From (5) and (9), the following implication is valid:

if JdKds p = p′, then there is a transition ⟨d, p⟩ → p′,

where p′ is the same result state depending on the actual direction.

c) For a sequence of statements, we use structural induction. From (3)

JS1;S2Kp = (JS2K◦ JS1K)p = p′′.

Both S1 and S2 are substatements (components) of the sequence S1;S2, there-
fore, we form the induction assumptions for them:

if JS1Kp = p′, then there is a transition ⟨S1, p⟩ → p′,
if JS2Kp′ = p′′, then there is a transition ⟨S2, p′⟩ → p′′.

The induction assumptions also imply the assumptions of the rule (11), there-
fore the conclusion

⟨S1;S2, p⟩ → p′′

is also valid.

d) For the n-steps moves, we prove the implication for our three semantic defini-
tions and their combinations:

i) Ids ⇒ Ins (direct approach):

Proof of equivalence of semantic methods for a selected domain-specific language 87

If Jd nKds p = p′, then from (12) there exists a transition ⟨d n, p⟩ → p′ for
each direction d.

ii) IIds ⇒ IIns (rewriting approach):
The denotational semantics is defined from (7) for JnK ≥ 0 as

Jd nKds = Jd (n−1)Kds(JdKds p).

We prove the implication by structural induction:
The statements d (n−1) and d are the substatements of the statement d n,
so we can formulate the following induction assumptions for them:

if JdKds p = p′, then there exists a transition ⟨d, p⟩ → p′, and
if Jd (n−1)Kds p′ = p′′, then there exists ⟨d (n−1), p′⟩ → p′′.

The induction assumptions imply the assumptions of the natural seman-
tics rule (13), which implies the validity of the conclusion:

⟨d n, p⟩ → p′′,

for each corresponding direction d.
If JnK = J0K, then from (10) there exists a transition ⟨d 0, p⟩ → p.

iii) IIIds ⇒ IIIns (inductive approach):
The denotational semantics of d (n+1) is defined by (8) as

JdKJ0K
ds p = p,

JdKJn+1K
ds = JdKds(JdKJnK

ds p).

We prove the implication by mathematical induction. Let JnK = J0K.
From (14), there exists the transition

⟨d,0, p⟩ → p.

Now let JkK < JnK be an arbitrary natural number. We formulate the
induction assumption for JkK:

if JdKJkK
ds p= JdKds(JdKJk−1K

ds p), then there exists a transition ⟨d,k, p⟩→ p′.

From (3):

if JdKds p′ = p′′, then there exists a transition ⟨d, p′⟩ → p′′.

We prove the implication for Jk+1K. We have two assumptions of the
rule (14) that imply validity of the conclusion:

⟨d,k+1, p⟩ → p′′.

88 W. Steingartner, V. Novitzká, W. Schreiner

iv) IIds ⇒ Ins. From (13), for Jd 0Kds p = JskipKds p = p, there exists a transi-
tion

⟨d 0, p⟩ → p.

We perform the proof by mathematical induction on JnK.
Let d = left and JkK < JnK. We formulate the induction assumptions:

if JleftKds[x,y] = [x⊖ J1K,y], then there exists a transition
⟨left, [x,y]⟩ → [x⊖ J1K,y],

if Jleft kKds[x⊖ Jk⊖1+1K,y] = [x⊖ JkK,y], then there exists a transition
⟨left k, [x,y]⟩ → [x⊖ JkK,y].

For Jk+1K: if Jleft(k+1)Kds[x,y] = Jleft kKds(JleftKds[x,y]), then there
exists a transition ⟨left (Jk+1K), [x,y]⟩ → [x⊖ Jk+1K,y].

v) IIIds ⇒ IIns. The denotational semantics of the statement d n is defined
by

JdKJ0K
ds p = p,

JdKJn+1K
ds p = JdKds(JdKJnK

ds).

We use mathematical induction. For JnK = J0K:

if JdKJ0K
ds p = p, then there exists a transition ⟨d 0, p⟩ → p.

Let JkK < JnK. We formulate the induction assumptions:

if JdKk
ds p = p′, then there exists a transition ⟨d k, p⟩ → p′,

if JdKds p′ = p′′, then there exists a transition ⟨d, p′⟩ → p′′.

Both induction assumptions are the assumption of the rule (13). Therefore
the conclusion is valid for Jk+1K:

⟨d(k+1), p⟩ → p′′.

2. Now, we prove the opposite implication:

if ⟨S, p⟩ → p′ then JSKds p = p′.

Let S be a statement executed in the state p = [x,y].

a) The proof of special statements is simple:

if ⟨reset, p⟩ → p∗, then from (3) JresetKds p = p∗,
if ⟨skip, p⟩ → p, then from (3) JskipKds p = p.

Proof of equivalence of semantic methods for a selected domain-specific language 89

b) Consider one-step moves. For each corresponding direction d it follows

if ⟨d, p⟩ → p′, then from (3) JdKds p = p,

c) For sequence of statements S1;S2, we have the rule:

⟨S1, p⟩ → p′ ⟨S2, p′⟩ → p′′

⟨S1;S2, p⟩ → p′′

We use structural induction. The statements S1 and S2 are the substatements of
the sequence, therefore we can formulate induction assumptions:

if ⟨S1, p⟩ → p′, then JS1Kds p = p′, and
if ⟨S2, p′⟩ → p′′, then JS2Kds p′ = p′′.

Then

JS1;S2Kds p = JS2Kds(JS1Kds p) = JS2Kds p′ = p′′.

d) For n-steps moves, we prove the combinations of our three approaches on how
to define the semantics.

i) Ins ⇒ Ids (direct approach)

In direct approach of natural semantics for each direction and JnK natural
number exists a transition ⟨d n, p⟩ → p′. Then, in denotational semantics
for each corresponding direction from (6):

Jd nKds p = p′.

ii) IIns ⇒ IIds (rewriting)

We assume in natural semantics

⟨d (n−1), p⟩ → p′ ⟨d, p′⟩ → p′′

⟨d n, p⟩ → p′′

⟨d 0, p⟩ → p.

For JnK = J0K:

if ⟨d 0, p⟩ → p, then Jd 0Kds p = Jskip pK = p.

Let JkK < JnK. We formulate induction assumptions:

if ⟨d k, p⟩ → p′, then Jd kKds p = p′,
if ⟨d, p′⟩ → p′′, then JdKds p′ = p′′.

90 W. Steingartner, V. Novitzká, W. Schreiner

From induction assumptions, we get:

Jd (k+1)Kds p = Jd k;dKds p = JdKds(Jd kKds p) = JdKds p′ = p′′.

iii) IIIns ⇒ IIIds (inductive).

From natural semantics:

⟨d,0, p⟩ → p,

⟨d,n, p⟩ → p′ ⟨d,1, p′⟩ → p′′

⟨d,n+1, p⟩ → p′′

Let JnK = J0K. Then

if ⟨d,0, p⟩ → p, then JdKJ0K
ds p = p.

Let JkK < JnK. We formulate induction assumptions:

if ⟨d,k, p⟩ → p′, then JdKJkK
ds p = p′,and

if ⟨d,1, p′⟩ → p′′, then JdKds p′ = p′′.

From the induction assumptions:

JdKk+1
ds p = JdKds(JdKJkK

ds p) = JdKp′ = p′′.

iv) Ins ⇒ IIds. Natural semantics is defined by ⟨d n, p⟩ → p′′.

Let JnK = J0K. If ⟨d 0, p⟩ → p then Jd 0Kds p = p.

Let JkK < JnK. We formulate the induction assumptions:

if ⟨d, p⟩ → p′, then Jd1Kds p = p′,
if ⟨d k, p′⟩ → p′′, then Jd kKds p′ = p′′.

Then it follows:

Jd (k+1)Kds p = Jd kKds(JdKds p) = Jd kKds p′ = p′′.

v) IIns ⇒ IIIds. Natural semantics is defined by the following rules:

⟨d (n−1), p⟩ → p′ ⟨d, p′⟩ → p′′

⟨d n, p⟩ → p′′

⟨d 0, p⟩ → p.

For JnK = J0K it holds trivially that JdK0
ds p = p.

Proof of equivalence of semantic methods for a selected domain-specific language 91

Let JkK < JnK. Then we assume

if ⟨d k, p⟩ → p′, then JdKJkK
ds p = p′, and

if ⟨d, p′⟩ → p′′, then JdKJ1K
ds p′ = p′′.

Then for Jk+1K it follows

JdKJk+1K
ds p = JdK1

ds(JdKJkK
ds)p = JdK1

ds p′ = p′′.

This completes the proof of the semantic equivalence.

7. Conclusions

In this paper, we have formulated a proof of the equivalence of the semantic meth-
ods for the simple language Robot. We have constructed a proof for the equivalence
of operational and denotational semantics. This version of the language is based on
simplifications, where we assume a (potentially) unlimited infinite network for the
movement of the robot. In this network expressed in the coordinate system, there are
currently no defined obstacles that the robot would have to overcome. Thanks to the
mentioned simplifications, the semantic functions are thus defined as total. Moreover,
in this model of the Robot language, we considered only integer coordinates for
the robot, which allows (for pedagogical reasons) to work with the given abstrac-
tion more easily. In the future, it is also possible to consider the addition of the
third dimension, which will create a three-dimensional coordinate space in which,
for example, the movement of a drone can be modeled using the relevant DSL lan-
guage. To bring our domain-specific Robot language closer to a real languages, in
further research, we want to focus on extensions, such as incorporating obstacles
(those can be solved by the conditional and loop statements), and expanding the net
from two-dimensional to three- dimensional structures for more nuanced and sophis-
ticated programming capabilities. These extensions not only diversify the linguistic
landscape but also provide a foundation for addressing more complex computational
challenges in future language design and implementation. Certainly, it is a challenge
to respond to such an expanded language by expanding and verifying the relevant
semantic methods.

Acknowledgment

This work was supported in the frame of the initiative project
“Semantics-Based Rapid Prototyping of Domain-Specific Languages”
under the bilateral program “Aktion Österreich-Slowakei, Wissenschafts-

und Erziehungskooperation” granted by Slovak Academic Information Agency and
by the project 030TUKE-4/2023 “Application of new principles in the education of

92 W. Steingartner, V. Novitzká, W. Schreiner

IT specialists in the field of formal languages and compilers”, granted by Cultural
and Education Grant Agency of the Slovak Ministry of Education.

References

[1] Mernik, M., Heering, J., & Sloane, A. (2005). When and how to develop domain-specific
languages. ACM Computing Surveys, 37, 316-344. DOI: 10.1145/1118890.1118892.

[2] Voelter, M., et al. (2013). DSL Engineering – Designing, Implementing and Using Domain-
-Specific Languages. dslbook.org.

[3] Fowler, M. (2010). Domain-Specific Languages. Molecular Physics.
[4] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., & Völkel, S. (2014). Design

guidelines for domain specific languages [Available on https://arxiv.org/ftp/arxiv/papers/1409/
1409.2378.pdf]. CoRR, abs/1409.2378. http://arxiv.org/abs/1409.2378.

[5] Nordmann, A, Hochgeschwender, N., & Wrede, S. (2014). A survey on domain-specific
languages in robotics. In: D. Brugali, J.F. Broenink, T. Kroeger, & B.A. MacDonald (Eds.),
Simulation, Modeling, and Programming for Autonomous Robots. Springer International
Publishing, 195-206.

[6] Horpácsi, D., & Kőszegi, J. (2015). Formal Semantics [Accessed: 5.01.2022].
[7] Steingartner, W., & Novitzká, V. (2021). Natural semantics for domain-specific language.

New Trends in Database and Information Systems, 181-192.
[8] Nielson, R.H., & Nielson, F. (2007). Semantics with Applications: An Appetizer. Springer

Science & Business Media.
[9] Stoy, J.E. (1981). Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. The MIT Press. https://mitpressbookstore.com/denotational-semantics.
[10] Kahn, G. (1987). Natural semantics. STACS 87, 4th Annual Symposium on Theoretical Aspects

of Computer Science. Passau, Germany, February 19-21, 1987, Proceedings, 22-39.

