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Abstract. The classical iterative methods, such as the fixed point iteration, the Adomian
decomposition method and the homotopy analysis method are discussed in the present paper.
It is proven that adding a convergence control parameter into these makes them powerful
and rapidly converging to the true solution, whilst the classical correspondences may fail
to or slowly converge to the desired solution. The key is to demonstrate the presence of
a continuous interval of the convergence control parameter for the considered problem.
This allows convergence of such modified iterative methods with an optimum convergence
control parameter obtained from squared residual errors of either the original equation or the
derivative of iterative solution with respect to the convergence control parameter.
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1. Introduction

Approximate solutions of nonlinear equations in algebraic or differential form
are highly desirable nowadays to gain information about the behavior of solutions.
The classical iterative methods are discussed here when a convergence control
parameter is plugged into the classical formulation.

There are a significant number of iterative methods available in the literature now.
The oldest and the longest lasting method may be the fixed point iteration [1]. Differ-
ential equations with deviating arguments were considered by the fixed point iteration
technique in [2]. A fixed-point iterative method together with its convergence theo-
rem was given in [3] suitable for system of nonlinear equations. The convergence
theorems for fixed point iterative methods based on the admissible function concept
were presented in [4]. A family of Newton-type iterative methods for solving nonlin-
ear equations was recently presented in [5]. Self-accelerating parameters are shown
to increase the convergence order without extra computational cost.
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The Adomian decomposition method is yet another technique of iteratively
approximating the solutions through Adomian polynomials made use of the nonlinear
terms, refer to [6]. Differential equations were solved in [7] by means of the decom-
position method of Adomian. The recent advances in the Adomian method can be
grasped from the works [8–10]. The homotopy analysis method is also a flash approx-
imate analytical method nowadays, like the Adomian method. Many good ideas and
papers on the homotopy method can be found in the book [11]. Also see the series of
publications on the foundations and applications of the HAM method [12–15].

Even though the literature is full of iterative techniques; either in classical or
accelerated forms, there is no rigorous mathematical treatment in order to explain
their feasibility. The present motivation is to rigorously prove that embedding a con-
vergence control parameter within the classical iterative methods makes them quite
strong in view of convergence. Showing the presence of a continuous interval of con-
vergence parameters is the key for the rapid convergence of modified methods, whilst
their cousins may be divergent or slowly convergent.

2. Iterative methods

Three iterative methods, namely fixed point, Adomian decomposition and homo-
topy analysis will be analyzed in what follows.

2.1. Fixed point for algebraic equations

For x real, let f (x) be a differentiable function over a closed interval I = [a,b]⊂ R
in which at least a solution to

f (x) = 0 (1)

is supposed to exist. For a better mathematical exposition, let us rewrite (1) in classi-
cal fixed point form

x = x+ f (x). (2)

It is well known that the fixed point iteration algorithm associated with (2)

xn+1 = xn + f (xn), (3)

with an initial guess, x0 converges if

|1+ f ′(x)|< 1, (4)

provided that I is mapped onto I by x+ f (x). Condition (4) leads to a good approx-
imation interval −2 < f ′(x) < 0 to be picked up for the initial guess x0, though not
necessary. Also, the fastest convergence rate of (3) is achieved when 1+ f ′(x) = 0,
since then, it will converge quadratically, with less restrictive conditions imposed on
f ′′(x).
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With h a real parameter, referred to hereafter as the so-called convergence control
parameter, it is possible to rewrite (1) in the Krasnoselskij form [2]

x = (1−h)x+h(x+ f (x)), (5)

which can be simplified to

x = x+h f (x), (6)

whose iterative form with an initial approximation x0 is

xn+1 = xn +h f (xn). (7)

Now, let us assume that xn(h) is a sequence produced from (7). For a sufficiently
large n, changing values of h will generate a convergent set of sequences xn(h), there-
fore, over a domain of h, xn(h) will converge to the same values, implying that xn(h)

will be constant over some h ∈ Ih ⊂ R, in which case
dxn

dh
will diminish for all h ∈ Ih.

The author is aware of the fact that this is a rather strong assumption, which may
imply convergence after a finite number of steps.

Theorem 1. Consider the successive iteration formula (7). If there exists h ∈ Ih
such that xn(h) are constant in the continuous interval Ih, i.e. xn(h) ∈ C1(Ih), then
f (xn(h)) = 0, that is, the convergent sequence xn(h) is a solution to (1).

Proof. Indeed, under the light of the above remarks,
dxn

dh
= 0 and using this fact,

after differentiating (7) with respect to h reads

dxn+1

dh
=

dxn

dh
+ f (xn)+h

d f (xn)

dx
dxn

dh
, (8)

which leads to f (xn(h)) = 0.
This completes the proof ⋄
Remark 1. For finite and large n, the graph of xn(h) versus h will lay out the

interval of convergence control parameter Ih.
Corollary 1. Having obtained the approximated xn(h) at high iteration level n, the

best value of the convergence resulting in the quickest rate of convergence of iterative
process (7) may be picked up from optimizing control parameter h, to achieve the
minimums either

dxn

dh
= 0 (9)

or
f (xn(h)) = 0. (10)

Corollary 2. The initial guess, though not necessary, assures that the convergence
can be selected from the analogy of (4)

|1+h f ′(x0)|< 1. (11)
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In fact, the fastest convergence occurs when 1+ h f ′(x0) = 0, and this leads to the
iteration (7) to coincide with Newton’s iteration.

Remark 2. Double/multiple roots of (1) may be easily gained from the selection
of appropriate initial guesses.

Corollary 3. If x+ f (x) = g(x) operates as self mapping over a convex subset
of a normed space, then the Krasnoselskij iteration (7) will converge over h ∈ [0,1],
whose proof can be inferred from [2].

2.2. Adomian decomposition for algebraic equations

Let f (x) = g(x)+ l, where g(x) solely depends upon x and l is a constant, and we
want to find the solution to (1). From (6), we write

x = x+h(g(x)+ l), (12)

and decomposing x into classical series

∞

∑
n=0

xn

and g(x) into a series of Adomian polynomials

∞

∑
n=0

An

with the definition of Adomian polynomials

An =
1
n!

dn

dλ n

(
g
(

∑
i=0

λ
ixi

))∣∣∣∣∣
λ=0

, (13)

we have the recursive relation

x0 = hl,

xn+1 = xn +hAn. (14)

Theorem 2. If the sum

xM(h) =
M

∑
n=0

xn(h),

approximating the root of (1) and producing it from (14) is nearly constant (for
the notion of nearly constant, please refer to Theorem 1) over a continuous interval
h ∈ Ih ⊂ R for a sufficiently large M, then f (xn(h)) = g(xn(h))+ l = 0 over Ih.

Proof. Differentiating xM(h) as a consequence of (14), with respect to h, and
neglecting the derivatives with respect to h, it is obtained
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l + ∑
n=0

An = g(xn)+ l = f (xn) = 0. (15)

This completes the proof ⋄
We should mention that all the previous Corollaries expressed for the fixed point

method remain the same for the decomposition method here.

2.3. Fixed point for operator equations

Now, let us consider operator problem

L(u)+N(u) = f (x), (16)

where L is a linear operator, N is the rest of the operator consisting of linear and
nonlinear parts, and u(x) is a function to be solved over a domain Ω ⊂ R with
appropriate initial and boundary conditions. The operators belong to the Banach
space, and u is a well-behaved function having a sufficient number of continuous
derivatives. The classical Picard iteration is

un+1 =−L−1(N(un)− f )+g, (17)

where g is due to the boundary and initial conditions. The optimum Picard iteration,
analogous to the algebraic case (7), can be introduced through

un+1 = (1−h)un −hL−1(N(un)− f )+g, (18)

with u0(x) = u0(x) as the initial guess. It should be anticipated that h = 1 matches
the classical Picard iteration (17).

Theorem 3. For the iterative formula (18), if there exists h ∈ Ih ⊂ R such that
un(x,h) is nearly constant for the continuous interval Ih for a sufficiently large n, then
these values of h do produce an iterative solution satisfying the nonlinear operator
equation (16).

Proof. Taking into account the hypothesis, differentiating (18) with respect to h
and omitting the derivatives with respect to h, (18) leads to

L(un)+N(un) = f (x). (19)

This completes the proof ⋄
Corollary 4. For finite and large n, the constant h level curves of un(x,h) over

x ∈ Ω will form the region Ih. Since u(x) is a differentiable function, the level curves
of u(n)(x) may also be at one’s disposal.

Corollary 5. The optimum value of h can be gained from the squared residual
error

Res(h) =
(∫

Ω

[L(un)+N(un)− f (x)]2dΩ

)1/2

. (20)
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Another alternative to receive the optimum value of h could be

Res(h) =
(∫

Ω

[du
dh

]2
dΩ

)1/2

. (21)

2.4. Adomian decomposition for operator equations

There is no need to repeat the analysis given in section 2.3, and hence the above
procedure can be simply adapted to the Adomian decomposition method for the
Adomian iterative scheme [8]

u0 = L−1(h f )+g,

un+1 = L−1 [(1−h)L(un)−hN(un)] . (22)

2.5. Homotopy analysis

Consider the nonlinear equation

N(u(x)) = 0, (23)

defined over a domain Ω ⊂ R with appropriate initial and boundary conditions. Con-
struction of homotopy associated with (23) in the manner

(1− p)L(u)−hpN(u) = 0, (24)

with p ∈ [0,1], leads to at p = 1 [11]

uM =
M

∑
n=0

un(x,h) (25)

as the approximate homotopic solution of (23).
Theorem 4. If there exists a continuous interval Ih ⊂ R such that the homotopic

solution uM in (25) is nearly constant for h ∈ Ih for a sufficiently large M, then for
such values of h, the produced solution satisfies the nonlinear operator equation (23).

Proof. Differentiating (24) with respect to h, and omitting the derivatives of vari-
ables with respect to h, (24) gives rise to

N(uM) = 0. (26)

This completes the proof ⋄

3. Discussions

3.1. Algebraic equations

Example 1. Consider the simple fixed point problem

x = 1− x, (27)
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or simply the root finding problem f (x) = 1−2x = 0. The solution is the fixed point
x = 1/2, but since it is a repelling point, the classical fixed point method (3) fails for
any initial guess, except x0 = 1/2. Refer to the paper by Berinde [2].

Instead, if we make use of the improved fixed point iterative process (7) with
convergence control parameter h, we may write

xn+1 = (1−h)xn +h(1− xn), x0 = 0. (28)

n=7

n=7

x
dx

dh

n=15

n=15
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Fig. 1. Control h curves relevant to equation (27) from the fixed point iteration

The constant h level curves generated from (28) are displayed in Figure 1, at the
iterative levels 7 and 15, respectively. It is anticipated that the convergence control
parameter h can be picked up from the interval Ih = [0.2,0.8] which makes the im-
proved fixed point iterative scheme (28) convergent. In fact, the condition (4) yields
0 < h < 1. This figure explains why the classical fixed point iteration should not
converge, since h = 1 is outside the domain Ih, regardless of what the approximation
level n is. Minimizing the iteration at n = 7, with the residual Res(h) = (1−2x7(h)),

or with the derivative
dx7(h)

dh
results in the same optimum convergence control

parameter h = 0.5.
To examine the problem (27) with the Adomian decomposition method, because

equation (27) is linear in nature, its accelerated Adomian decomposition method from
(14) with the initial value x0 = h coincides with the fixed-point iteration from (28).

Example 2. Let us now solve the transcendental equation

f (x) = e−x − cosx = 0, (29)

with the numeric roots x = 0 and x = 1.29269.
With the initial approximation x0 = 0.5, the improved fixed point iterative process

(7) yields the constant h level curves at the iteration level n = 8, which is capable of
capturing both roots at the same time, as demonstrated in Figure 2.

Figure 2 clearly points to the fact that the convergence control region for the root
x = 0 is Ih = [0.6,1.8] and for the other root it is Ih = [−2.20,−0.8], respectively.
Actually, minimizing the residuals leads to the optimum convergence control param-
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eters as h = 1 and h = −1.45, respectively. These lead to the fastest convergence to
the real roots.

n=8
x

dx

dh

-3 -2 -1 0 1 2
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-1

0

1
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x

Fig. 2. Control h curves relevant to equation (29) from the fixed point iteration

3.2. Differential equations

Example 3. Consider the nonlinear boundary-value problem

u′′ = su2 +β
2u, u′(0) = 0, u(1) = 1, (30)

representing the porous fin problem for the heat removal process [8]. There is no
exact solution for the current problem.

From (18), one can easily construct the fixed point iteration algorithm

un+1 = (1−h)un +h
∫ x

1

∫ x

0
(su2

n +β
2un)dxdx+h, u0 = 1. (31)
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Fig. 3. Control h curves relevant to equation (30) from the fixed point iteration

For the specific parameters s = β = 1, Figure 3 reveals the constant h level curves
corresponding to the 7th order fixed point iteration. The figure implies that for the
convergence to take place, the convergence control parameter must be selected from
the interval Ih = [0.2,0.8]. The fastest convergence occurs at h = 0.67 as a result of
minimizing the squared residual error (20) or (21). On the other hand, the classical
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fixed point iteration may not even converge, since h = 1 does not reside within this
range. For instance, the optimum h computes the wall temperate u(0) = 0.522690
and the fin efficiency u′(1) = 1.1393791, versus the classical fixed point iteration,
giving u(0) =−0.03125 and u′(1) = 1.21875 for h = 1. We should mention that the
exact numerical values are u(0) = 0.522738093570 and u′(1) = 1.13937891581.
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Fig. 4. Control h curves relevant to equation (30) from the Adomian decomposition method

The optimum Adomian decomposition method corresponding to the problem (30)
can be better viewed from Figure 4. At this fine approximation level M = 20,
the boundaries of convergence control parameter interval are very strict nearing to
Ih = [0.1,0.6]. It is certain that the classical Adomian decomposition method will
diverge when h = 1, since no truncation level can attain a close value to the actual
solution. On the other hand, the best convergence control parameter is evaluated as
h = 0.47, yielding an approximate solution correct to 7 significant digits, refer to
the outcomes u(0) = 0.522738297343 and u′(1) = 1.13937820236, and the exact
numerical ones aforementioned.

Example 4. Consider the system of nonlinear equations from [16]

f ′′′′+2Re( f f ′′′+gg′) = 0, f (0) = 0, f ′(0) = s1, f (1) = 0, f ′(1) = s2,

g′′+2Re( f g′− f ′g) = 0, g(0) = 1, g(1) = Ω. (32)

The nonlinear boundary-value model (32) governs the viscous flow between two
rotating disks stretching at the rates s1 and s2, and the upper one is also rotating
with the angular frequency Ω. Additionally, Re means the Reynolds number.

For the particular parameters s1 = s2 = 0.5, Re = 10 and Ω = 0, as well as with
the initial approximations

f0(η) = s1η − (2s1 + s2)η
2 +(s1 + s2)η

3,

g0(η) = 1+(Ω−1)η , (33)

Figure 5 shows the constant h level curves at the fixed point iteration level 6, corre-
sponding to the physical variables f ′′(0), f ′′(1), g′(0) and g′(1), respectively.
The observation is that the interval Ih = [0.5,1.5] is the correct interval for the choice
of convergence control parameter h. In fact, the minimum squared residual leads to



114 M. Turkyilmazoglu

h = 0.92 as the optimum value, producing accurate solutions only up to 2 significant
decimal places. This implies that the number of iteration should be increased with
more mature iterations.
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Fig. 5. Control h curves relevant to equation (32) from the fixed point iteration

For the same physical parameters and the leading term (33), the constant h level
curves are depicted at the iteration level M = 20 for the Adomian decomposition
scheme in Figure 6. The interval of convergence control parameter h appears to
be Ih = [0.2,1.5]. The optimum convergence occurs at h = 1.018, leading to the
approximate values f ′′(0) = −2.38938054 and −g′(0) = 1.54480401, correct to 6
decimal places, since the exact numerical outcomes are f ′′(0) = −2.38938053 and
−g′(0) = 1.54480443, see [16].
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Fig. 6. Control h curves relevant to equation (32) from the Adomian decomposition method

Example 5. This final example is the iterative differential equation or the differ-
ential equation with a deviating argument

u′ =
1

10
u(u(η))2, u(0) = 1, −1 ≤ η ≤ 1, (34)

taken from the reference [2], see also [17]. It is proven mathematically in [2] that the
fixed point iterative method

un+1(η) = (1−h)un(η)+h+
h
10

∫
η

0
un(un(η))2dη , (35)
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approximates well the solution of (34) over η ∈ [−1,1] for h ∈ Ih = (0,1). No opti-
mum value yielding the best rate of convergence was mentioned in [2].
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Fig. 7. Control h curves relevant to equation (34)

On the other hand, Figure 7 proves that the convergence region of the fixed point
iterative scheme (35) is in fact extended up to a value of h almost 2. The optimum h is
worked out as h = 1.2086 from the squared residual, which yields accurate solutions
correct up to the 5 digits, since(∫ 1

−1

[
u′(t)− 1

10
u(u(t))2

]2
dt
)1/2

(36)

turns out to be 0.0000596 at the optimum h. At this order, the approximate solution
to (34) is found to be

u(η) = 1+η (0.1275336004+η (0.0018432339+0.0000356532η)) (37)

4. Conclusions

There are various ways of turning an equation f (x) = 0 into a fixed point equation.
The present work considers the parameterized fixed point equation x = x+h f (x) as
well as a generalization based on the so called Adomian decomposition. The study
aims to draw relations between the convergence of the fixed point iteration and
(nearly) constant fixed point iterates with respect to h. The further objective is to
provide a feasible explanation towards the success of the classical iterative methods
of fixed point iteration, the Adomian decomposition method and the homotopy analy-
sis method when a convergence control parameter is embedded.

It is mathematically shown that the classical iterative algorithms may diverge or
slowly converge to the physical solution, but the existence of a continuous interval of
the convergence control parameter makes them favourable since a rapid convergence
is achieved. Even a best convergence control parameter of such modified iterative
methods can be derived from squared residual errors of either the original equation
or the derivative of iterative solution with respect to the convergence control param-
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eter. It is rigorously explained how to deal with the interval of convergence control
parameters for the considered problems.
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