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Abstract. In the article, we investigate the stability of a simple mathematical model describ-

ing the vibration of a machine. The model is characterized by a nonlinear second-order dif-

ferential equation with a delay. We present a detailed stability analysis and examination of 

the equilibrium of this equation, providing insights into the dynamic behavior of the system. 

The aim of the article is to investigate the effect of body movement on equilibrium stability 

and to determine the value of the parameter � at which body vibration occurs. The research 

used a methodology for solving the given type of nonlinear differential equations, for example, 

linearization. 
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1. Introduction  

The movement of a body on an uneven surface can induce vibrations, a common 

issue encountered in machines, vehicles, structures, and buildings. As the speed of 

machinery increases, the forces exciting these vibrations become more pronounced, 

potentially leading to significant vibration problems. These excitations can arise 

from various external sources and manifest as periodic or random motions. 

This study focuses on the single degree of freedom model of a vibrating system 

with viscous damping, as presented in [1]. The equation of motion for this system  

is considered linear. Previous research has explored similar problems, including  

the investigation of machine tool vibrations in [2], and other relevant mathematical 

models are discussed in [3] and the references therein. In the book [4], the author 

took the opportunity to revise, modify, update and expand the material from publi-

cation [1]. This book discusses very comprehensively the analysis of the vibration 

of dynamic systems and then shows how the techniques and results obtained in  

vibration analysis may be applied to the study of control system dynamics. Vibrational 
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dynamics is also studied in [5-7]. In the article [8], the authors focus on the dynamic 

modeling of the entire machine tool. Using the finite element method and virtual 

simulation, they developed analytical models whose parameters are evaluated exper-

imentally. In the article [9], a nonlinear dynamic model is developed to analyze  

the wear and vibrations.  

Delay differential equations offer a deeper understanding of numerous problems 

across various fields of natural science and engineering technology. They have also 

been proposed to model commodity cycles in economics. To write this contribution, 

we drew inspiration from the model presented in [1] (Fig. 1), which does not include 

delay. However, we decided to investigate the delay differential equation to gain  

a deeper insight into the dynamics of machine vibrations. 

 

 

Fig. 1. Single degree of freedom model of a vibrated system with viscous damping 

We consider the delay differential equation as follows: 

������� � 	 ������ 
 ���� 
 ��� � ������ 
 �����,   � � 0, 
 ������ � �� ������ 
 �′�� 
 ��� � �� ����� 
 �����.  

We put � � 	 �⁄ , � � � �⁄ , and the equation has a form 

������ � � ������ 
 ���� 
 ��� � � ����� 
 �����, 
where �, �, � are parameters. 

The foundation is subjected to vibration � � �� sin �. Then we have the nonlinear 

delay differential equation 

 ������ � � ! �� ����� cos ���� 
 ���� 
 ��$ � � ! �� sin ���� 
 ����$ , � % 0. (1) 

We assume that the parameters �, � ∈ �0, ∞�, � ∈ (0, ∞�. It is required to determine 

the stability of equilibrium and the response � of the body.  
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We write equation (1) as the equivalent first order nonlinear system 

 
����� � � !�� sin ���� 
 ��� 
 ��$ � )���,

)���� � � !�� sin ���� 
 ����$ ,   � % 0.  (2) 

We obtain the equilibria of the system (2) from the equations 

 
� !�� sin � 
 �$ � ) � 0,

� !�� sin � 
 �$ � 0.   

We get *+ � �0, 0�, *, � !�� , 0$, *� � !
 �� , 0$. We will investigate the stability of  

*, � !�� , 0$. This can be achieved by linearising the system (2) at the equilibrium *,. The linearised system has the form 

 
����� � 
���� 
 �� � )���,)���� � 
�����, � % 0.  (3) 

Since the system (3) is linear, we set 

���� � -./0  and  ��� 
 �� � -./0.3/4 � ����.3/4. 
We obtain 

����� � 
�.3/4���� � )���,)���� � 
�����,   � % 0.  

The corresponding characteristic equation reads 

5
�.3/4 
 6 1
� 
65 � 0, 
 6� � �.3/46 � � � 0. (4) 

The stability will change if 6 reaches the imaginary axis of the complex plane. 

2. Theoretical results 

In this section, we determine the conditions under which the roots of the charac-

teristic equation are purely imaginary and the conditions under which the equilibrium 

state changes stability.  
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Lemma 2.1 Equation (4) has the pure imaginary root 6 � 89, 9 � 0 for  

� � �: ,   ; � 0, 1, 2, …, 
where 

 �+ � ��>  ,   �: � �+ � ��:>  ,   ; � 1,2, …,  
 9 � ?@A√@C3DE�  ,   F � �� � 2�,   G � ��.  

Proof. We substitute 6 � 89, 9 � 0 into equation (4), 


9� � 8�9 .3H4> � � � 0, 

9� � 8�9 �cos 9� 
 8 sin 9�� � � � 0, 

9� � 8�9 cos 9� � �9 sin 9� � � � 0. 

By separating the real and imaginary parts, we get 

�9 sin 9� � 9� 
 �, 
�9 cos 9� � 0. 

Eliminating the trigonometric terms from the equations above yields 

��9� sin� 9� � �9� 
 ���, 
��9� cos� 9� � 0. 

we obtain 

��9� �sin� 9� � cos� 9�� � �9� 
 ���, 
��9�  � 9D 
 2�9� � ��, 

9D 
 ��� � 2��9� � �� � 0. 
We have 

9D 
 F9� � G � 0, 
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where F � �� � 2�, G � ��. Then we get 

 9� � @±√@C3DE� ,   9 � ?@±√@C3DE�  .  
Since � � 0, 9 � 0, then 

cos 9� � 0,   and  cos�9�: 
 2J;� � 0,   ; � 0, 1, 2, … . 
We get 

 �: � ��> � ��:> ,   ; � 0, 1, 2, … .  
For ; � 0 

 �+ � ��> ,   and   �: � �+ � ��:> ,   ; � 1, 2, … .  
Lemma 2.2 Let 6��� � K��� �  89��� be the root of characteristic equation (4) 

for which holds 

K��:� � 0,   9��:� � 9,   ; � 0, 1, 2, … . 
If 

 29 � �, (5) 

then 

 L. !M/M4$3,5/NH>,4N4O
� 0.  

Proof. We insert 6��� into equation (4) 

6���� � �.3/�4�46��� � � � 0, 
and by differentiation of the equation with respect to the parameter �, we get 

 26 M/M4 � �.3/4 !
 M/M4 � 
 6$ 6 � �.3/4 M/M4 � 0,  
 26 M/M4 
 �6�.3/4 M/M4 
 �6�.3/4 � �.3/4 M/M4 � 0,  

 
M/M4 �26 
 �6�.3/4 � �.3/4� � �6�.3/4,  
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M/M4 � P/CQRST

�/AP�,3/4�QRST ,  
 
M/M4 � P/C

�/QSTAP�,3/4� ,  
 !M/M4$3, � �/QSTAP�,3/4�P/C  .  

For 6 � 89, � � �:, we obtain 

!M/M4$3,5/NH>,4N4O
� �H>QUVTOAP�,3H>4O�3P>C   

� P�H>4O3,�3�H>QUVTO
P>C   

� P�H>4O3,�3�H>�WXY >4OAH YZ[ >4O�P>C  .  
Separating the real part, we get 

 L. !M/M4$3,5/NH>,4N4O
� �>3PP>C  .  

With regard to condition (5), we obtain 

 L. !M/M4$3,5/NH>,4N4O
� 0.  

The next theorem follows from Lemma 2.1 and Lemma 2.2. 

 

Theorem. Suppose that condition (5) holds and � � 0, � � 0. Then equilibrium *, � !�� , 0$ is asymptotically stable for � ∈ (0, �+� and unstable for � � �+. 

3. Results of numerical simulation 

In this section, we illustrate the obtained results on a specific example. The fol-

lowing example and corresponding graphic representation was processed using the 

program MATHEMATICA. 

 

Example. Let � � 0.5, � � 0.25. Then the system (2) has the form 

 
����� � 0.5 !�� sin ���� 
 ��� 
 ��$ � )���,

)���� � 0.25 !�� sin ���� 
 ����$ , � % 0.  (6) 
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The constant � =  �� and � =  ��� . Then 

	 = 
  ��
� ���� = � �
√�� = �� � �
√��  . 
For the parameter ��, we get 

�� = �2	 = �
 23 + √5 = 0.618034 �. 
Figures 2 and 3 show the solution of the system (6) for the � = 0.5� ∈ (0, ��).  

The solution converges to '� = ()� , 0*. 

 

 

Fig. 2. Components of the solution of 

the system (6) 

Fig. 3. The solution of the system (6) 

in the phase plane 

Figures 4 and 5 show the periodic solution of the system (6) for the � = �� =  = 0.618034�. There are vibrations of the body. 

 

 

Fig. 4. Periodic components of  

the solution of the system (6) 

Fig. 5. Periodic solution of the system (6) 

in the phase plane 
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Figures 6 and 7 show the loss of the stability of *,. The � � J. 

 

 

Fig. 6. Components of the unstable 

solution of the system (6) 

Fig. 7. Unstable solution of the system (6) 

in the phase plane 

Conclusion 

In the paper, we examine the value of the parameter � at which the vibrations of 

the body arise. The vibration occurs when the parameter � exceeds �+ � 0, at which 

point the equilibrium *, loses its stability. Simulation on a specific example con-

firms the obtained theoretical results. For 0 ≤ � < �+, the equilibrium *, is stable 

(see Figs. 2 and 3). If � � �+, the system (6) has a periodic solution, indicating the 

presence of vibrations (see Figs. 4 and 5). If � � �+, the equilibrium *, is unstable 

(see Figs. 6 and 7). We assume that the foundation is subjected to vibration  � � �� sin �. It would be interesting to observe how the vibrational properties of the 

system change with a different vibrational function. In addition, we believe that  

the model is also suitable for solving other vibration problems. 
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