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Abstract. The paper presents an analysis of the influence of damping on the free vibrations 

of a slender column subjected to a specific load. The analyzed system is characterized by  

a step-variable geometry modeled by connected prismatic segments. The problem was  

formulated according to the Bernoulli-Euler theory and solved by the variational method 

(Hamilton’s principle). Boundary and continuity conditions were determined. The paper 

shows the influence of different types of damping on the free vibrations of the column,  

and indicates damping as one of the methods for passive controlling and steering of the  

dynamic properties. The proposed mathematical and numerical model is universal and can 

be applied to any variable column shape, taking into account any combination of the occur-

ring damping types. 
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1. Introduction  

Beams and columns are basic mechanical structures used as elements of machines 

and rod structures (e.g. bridges). Their stability and free vibrations determine the 

strength of the entire structure, hence the wide interest of scientists in these topics. 

The latest scientific works concern the analysis of the influence of the variable geo- 

metry of such systems on their dynamic properties and critical loads. This is related 

to the increasingly common need to optimize such systems with regard to strength 

or mass reduction. In addition to the issue of non-prismaticity, additional parameters 

are often taken into account in the works, which are intended to best represent real 

systems with a mathematical model. Therefore, in the scientific literature there are 

studies on the behavior of such systems under the influence of, for example, damping, 

support by an elastic base, pre-stressing or the occurrence of cracks. 
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The influence of materials and different types of damping on the dynamic stabil-
ity of the Bernoulli-Euler beam was presented in paper [1]. The problem of dynamic 
stability was solved using the mode summation method and applying an orthogonal 
condition of eigenfunctions, then describing the system with the Mathieu equation. 
In paper [2], the closed-formed analytical solutions of the steady-state forced vibra-
tion of the multi-cracked Timoshenko beams with damping effects were obtained. 
The authors, using the solution of the one-cracked situation and the transfer matrix 
method, presented the Green’s functions of beams for various boundary conditions. 
In conclusions, the effects of some physical parameters (the crack depth and loca-
tions) were also discussed based on numerical examples. The results of similar stud-
ies on systems with cracks were also presented in the works [3-6]. The last two works 
concern curved beams. Paper [6] studies not only nonlinear forced vibration of  
a multi-cracked Euler-Bernoulli curved beam, but also considers damping effects 
and derives the closed-formed analytical solution of steady-state forced vibration  
by means of Green’s functions. The issue of free and forced vibrations of damped 
locally-resonant sandwich beams was considered in paper [7]. In the described com-
plex modal analysis approach, the issue of dynamics is solved applying a recently- 
-introduced contour-integral algorithm to an exact dynamic stiffness matrix. Numer-
ical applications proved the exactness of the proposed solutions. The issue of vibra-
tion characteristics of rectangular cross-sectioned and straight beams with imperfect 
supports, focusing on the role of friction damping, was presented in paper [8].  
The differential equation describing the system was solved analytically, separat- 
ing the motion into two distinct regimes, using the Galerkin method. The obtained 
analytical results were then compared to those from a numerical model, which is 
built and solved using the finite element method combined with a frequency sweep 
and time-marching. A method proposed for frequency response analysis of Euler- 
-Bernoulli beams subjected by a constant axial load, and carrying an arbitrary num-
ber of translational and rotational dampers with Kelvin-Voigt viscoelastic behaviour 
was presented in paper [9]. The proposed solution relies on the theory of generalized 
functions, within a standard 1D formulation of the equation of motion. The authors 
concluded with the exact closed-form expressions derived for the frequency response 
of the beam with dampers, subjected to harmonically varying, arbitrarily placed 
transverse point/polynomial loads. In article [10], the vibration analysis of function-
ally graded and viscoelastic/fractionally damped beams with Pasternak foundation 
is presented. The governing equations were derived and solved analytically in the 
Laplace domain by considering the fractional three-parameter Kelvin-Voigt model. 
Studies on vibration reduction of the building structure equipped with an intermedi-
ate column-lever viscous damper was shown in paper [11].  

The presented selected examples from scientific literature show how complicated 
and complex the problem of free vibrations of slender systems subjected to various 
types of conservative and non-conservative loads is, constant or variable in time, 
when other parameters of the systems, such as damping or variable geometry, are 
additionally taken into account. This paper attempts to analyze the change in the 
dynamic properties of a column with a stepwise variable cross-section, subjected to 
a selected case of specific load, under the influence of internal and structural damping.  
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In order to perform numerical studies, the Bernoulli-Euler theory and the varia-

tional method were used, based on which a numerical calculation program was writ-

ten. The proposed approach is universal, thanks to which, with minor changes to the 

source code, columns of any shape and type of load can be analyzed, with coexisting 

different types of load. The research results may be of great importance not only for 

the development of science and a better understanding of the damping phenomenon, 

but also in the machine or construction industry. 

The paper is organized as follows. In Section 2, we present a physical model of 

the system. Section 3 contains formulas describing mechanical energy and mathe-

matical considerations aimed at defining boundary conditions and differential equa-

tions of motion and their solutions. In Section 4, the results of numerical calculations 

in the dimensionless form are introduced, while Section 5 concludes our paper. 

2. Physical model  

The analysis was performed on a slender elastic column subjected to a follower 

force directed towards the positive pole. The external load P is performed by heads 

with a circular outline (constant radius R of curvature) – loading and receiving  

the load. The column is connected to the loading system by means of an element, 

assuming its infinite bending stiffness. The concentrated mass m models the weight 

of the loading system. 
 

 

Fig. 1. Physical model of the system: a) column subjected to the follower force directed 

towards the positive pole, b) model of variable cross-section of the column 

The column is characterized by a stepwise variable cross-section – it consists of 

three prismatic segments of a given geometry. The dimensions of individual segments 

are changed while maintaining the condition of constant column volume. The system 

includes structural and internal damping. The structural damping was modeled using 

a rotational damper CR in the column mounting (at x = 0), and the damping caused 

by external viscous resistance was taken into account by the CE coefficient. EC is  

the coefficient of viscosity of the material. 
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3. Mathematical model  

The problem of transverse vibrations of a Bernoulli-Euler beam subjected to  

a follower force directed towards the positive pole, taking into account damping, was 

solved using Hamilton’s variation principle (see [12]) by formulating the boundary 

value problem:  
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where T  is a variation of kinetic energy, V  is the variation of the potential  

energy, the sum of the variances of the elastic energy 1V  and the energy from the 
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Substituting equations (2)-(5) into the equation describing Hamilton’s principle (1) 

gives the differential equations of motion as follows: 
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Boundary conditions for the presented system: 
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The solution to the differential equation of motion is the equation: 
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Substituting the solution of the differential equation (11) into the boundary con-

ditions (7)-(10), supplemented with appropriate continuity conditions, allows one to 

obtain a system of homogeneous equations. Representing the obtained system in the 

matrix form and equating the determinant of the matrix to zero allows one to obtain 

a transcendental equation for the value of the vibration frequency. 

4. Results of numerical calculations  

In order to compare the results with the reference system (without any damping), 

dimensionless damping coefficients are introduced in the form of:  

– dimensionless internal damping coefficient:  

� = ��
���� �	
��
������
�

 

(16)

– dimensionless external damping coefficient: 

� = ������	
��
������
� (17)

– dimensionless viscous structural damping coefficient: 

� = �����	
��
������
� (18)

– dimensionless parameter of change in geometry of particular segments: 

� = ����� − ����������
�  (19)
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The values of the coefficients relating to the individual types of damping were 

selected based on research available in the scientific literature. The parameters  

with the subscript ‘por’ in formulas (16)-(19) refer to the analogous values of the 

reference system (with constant cross-section and the same volume). 

The summary of selected results regarding the first three natural frequencies for 

all analysed cases is presented in Tables 1 and 2. The quoted values can be real or 

complex numbers. In the second case, the real part is responsible for the value of  

the vibration frequency, while the imaginary part characterises the degree of decay 

of the vibration amplitude. Case 1 concerns a system without any damping and is  

a reference point. In case 2, only the structural damping from the rotary damper CR 
, 

given by the parameter M, is taken into account. As it results from the presented 

values, this damping has a negligible effect on the values of the vibration frequency. 

Case 3 refers to external damping. The value of the imaginary part is constant for all 

three vibration frequencies, but it is worth noting the change in the first vibration 

frequency in particular.  

Table 1. Column vibration frequency values for selected damping cases (P = 100 N, 

Z = –0.5, R = 0.2 L) 

Case 1 2 3 

H 0 0 0 

N 0 0 17.6 

M 0 0.04 0 

�� 120.3 120.3 + 0.322i 18.594 + 118.83i 

�� 500.8 500.8 + 1.289i 486.5 + 118.836i 

�� 1134.8 1134.9 + 2.9i 1128.6 + 11.836i 

Table 2. Column vibration frequency values for selected damping cases (P = 100 N, 

Z = –0.5, R = 0.2 L) 

Case 1 4 5 

H 0 0.001 0 

N 0 0 4 

M 0 0 0.02 

�� 120.3 120.276 + 0.027i 117.85 + 1.173i 

�� 500.8 499.743 + 0.54i 498.6 + 1.354i 

�� 1134.8 1130.74 + 1.219i 1137 + 1.698i 

 
The results presented in Table 2 refer to case 4, in which the internal damping 

was analyzed, and case 5, in which the external and structural damping were taken 

into account simultaneously. In the case of internal damping, the vibration frequen-

cies differ little from the frequencies of the comparative system. However, the degree 
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of vibration amplitude decay is significantly smaller. In the case of combining two 

dampings, a slight decrease in the basic vibration frequencies was observed, while 

the degree of amplitude decay was greater than in the case of structural or internal 

damping, but smaller than in the case of external damping.  

5. Conclusions 

The subject of the work was the free vibrations of a column with a variable cross-

section subjected to a specific load in the aspect of changing dynamic properties 

under the influence of various types of damping. The problem was formulated based 

on the Bernoulli-Euler theory and solved using the variational calculus (Hamilton’s 

principle). Based on the presented results, it was shown that damping can have  

a significant effect on the values of the system's vibration frequency, and thus,  

can be used for passive control and steering of the dynamic properties of systems. 

The work presents a mathematical model enabling an in-depth analysis of the  

dependence of the vibration frequency and the analyzed damping, depending on the 

adopted geometric coefficients of the column, the loading system and the damping 

itself (rotational damper constant, rheological properties of the medium or viscous 

damping).  
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