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Abstract. Using Atangana-Baleanu fractional variable-order derivatives, this article investig-
ates the impact of memory effects on glucose-insulin dynamics. The uniqueness and bound-
edness of solutions are established using fixed-point theory. By adjusting the fractional deriv-
ative order, different chaotic behaviors can be observed. An Atangana-Baleanu fractional
framework is used to analyze Hyers-Ulam stability using the Sumudu transform. Through
linear controllers, the Atangana-Baleanu fractional chaotic system can be synchronized,
achieving equilibrium. This control mechanism could be beneficial to diabetes management,
such as insulin pumps that regulate insulin in real time based on glucose levels. By control-
ling Atangana-Baleanu fractional order chaos, glucose-insulin regulation could be improved.
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1. Introduction

Diabetes, often called a silent epidemic, contributes to the growing burden of
noncommunicable diseases. It primarily occurs because of obesity and declining
physical activity levels [1]. Since the World Health Organization updated its criteria
for diagnosing diabetes mellitus, global prevalence and incidence have surged. Over
the past decade, numerous studies have focused on diabetes and its complications.
Disease dynamics can be understood and controlled using mathematical models.
Nonlinear dynamics are often characterized by chaos, bifurcations, multistability, and
other complex behaviors in biological systems [2]. Studies have demonstrated that
glucose-insulin interactions display chaotic behavior, as demonstrated by time-series
analyses and long-term insulin measurements in ambulatory subjects [3]. Several
mathematical models, statistical techniques, and computational methods have been
used in these studies. These include glucose-insulin dynamics, diabetes epidemiol-
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ogy, and economic costs. Diabetes causes damage to capillary endothelial cells in
the retina, mesangial cells in the renal glomerulus, and neurons in peripheral nerves,
resulting in retinopathy, nephropathy, and neuropathy [4]. The glucose-insulin
dynamics model has evolved from two-dimensional (2D) differential equations [5]
to more complex nonlinear three-dimensional (3D) models incorporating β -cells [6].
A recent model based on predator-prey dynamics has highlighted the chaotic behav-
ior of the glucose-insulin regulatory system [7]. A number of studies focus on specific
aspects, such as glucose-insulin interactions, computational devices and algorithms,
the glycemic index, and the economic burden [8]. Fractional calculus provides
a framework for modeling systems with memory and hereditary properties, which
are essential for accurately capturing the dynamics of glucose and insulin regulation
in biological systems (e.g., [9–15]). Advanced numerical methods, including fixed-
-point theory and Sumudu transforms, improve computational efficiency and stability
in solving nonlinear chaotic systems [16–23]. These methods are particularly suited
to biological applications where memory-dependent processes influence system
dynamics.

In recent years, fractional calculus has emerged as a powerful tool for model-
ing systems with long-range memory effects and non-local interactions. A diabetes
study using it revealed improvements in glucose-insulin dynamics models, provid-
ing further insights into disease progression and treatment options. A number of
fractional derivative operators, including the Atangana-Baleanu, Atangana-Baleanu-
-Caputo, and Riemann-Liouville derivatives, have been employed in these models,
each having its own benefits based on the kernel functions they incorporate [24].

We investigate glucose-insulin dynamics using fractional Atangana-Baleanu
derivatives, which incorporate memory effects via Mittag-Leffler functions. This
approach enables the analysis of chaotic behavior, stability, and synchronization
in variable-order systems. Fixed-point theory ensures solution existence, while the
Sumudu transform and iterative numerical methods improve computational efficiency.
Our model advances diabetes management by refining chaos control strategies,
particularly for applications like insulin pump therapy. By integrating variable-order
derivatives and enhanced stability analysis, this study provides deeper insights into
nonlinear disease progression and contributes to personalized treatment strategies
in complex biological systems.

2. Model formulation

In [7], Shabestari et al. proposed a model based on the Lotka-Volterra framework
[25], incorporating fractional dynamics to analyze the glucose-insulin relationship.
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The fractional model is as follows:

ẋ=−b1x+b2xy+b3y
2 +b4y

3 +b5z+b6z
2 +b7z

3 +b20,

ẏ=−b8xy−b9x
2 −b10x

3 +b11y(1−y)−b12z−b13z
2 −b14z

3 +b21,

ż= b15y+b16y
2 +b17y

3 −b18z−b19yz.

with the initial conditions: x(0) = x0, y(0) = y0, z(0) = z0. Here: x represents
glucose concentration, y represents insulin concentration, and z represents the
population density of β -cells. The parameters bi for i = 1,2, . . . ,21 describe various
interaction rates which can be defined in Table 1. The model also incorporates
delayed differential and fractional-order systems to represent biological memory
dependence, adding flexibility to capture long-term memory, which is critical for
accurately modeling complex biological systems [26]. Additionally, the model
benefits from fractional-order systems due to the prevalence of fractal characteris-
tics in biological systems [27–31], allowing for realistic predator-prey dynamics and
complex behaviors in chaotic systems [32]. Using a fractional approach, the glucose-
-insulin regulation system is formulated as follows in the sense of the Atangana-
-Baleanu (AB) operator:

ABDρ

0,tx=−b1x+b2xy+b3y
2 +b4y

3 +b5z+b6z
2 +b7z

3 +b20,

ABDρ

0,ty=−b8xy−b9x
2 −b10x

3 +b11y(1−y)−b12z−b13z
2 −b14z

3 +b21,

ABDρ

0,tz= b15y+b16y
2 +b17y

3 −b18z−b19yz.

(1)

Table 1. Parameter values and definitions from Shabestari et al. [7]

Parameter Value Definition
a1 2.04 Normal decrease in insulin concentration without glucose.
a2 0.10 Rate of propagation of insulin with glucose.
a3 1.09 Rising insulin rate with increased glucose concentration.
a4 –1.08 Rising insulin level rate independently excreted by β -cells.
a5 0.03 Rising insulin level rate independently excreted by β -cells.
a6 –0.06 Rising insulin level rate independently excreted by β -cells.
a7 2.01 Rising insulin level rate independently excreted by β -cells.
a8 0.22 Insulin effect on glucose.
a9 –3.84 Rate of decrease in glucose due to insulin excretion.
a10 –1.20 Rate of decrease in glucose due to insulin excretion.
a11 0.30 Normal rising of glucose without insulin.
a12 1.37 Decrease in glucose concentration due to insulin from β -cells.
a13 –0.30 Decrease in glucose concentration due to insulin from β -cells.
a14 0.22 Decrease in glucose concentration due to insulin from β -cells.
a15 0.30 Rate of increase in β -cells due to increased glucose.
a16 –1.35 Rate of increase in β -cells due to increased glucose.
a17 0.50 Rate of increase in β -cells due to increased glucose.
a18 –0.42 Rate of decrease in β -cells due to existing levels.
a19 –0.15 Rate of decrease in β -cells due to existing levels.
a20 –0.19 Represents a constant input/output in the glucose dynamics.
a21 –0.56 Denotes a baseline rate of insulin production.
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A time-varying fractional glucose-insulin regulatory system has control AB fractional
order as follows:
ABDρ

0,tx=−b1x+b2xy+b3y
2 +b4y

3 +b5z+b6z
2 +b7z

3 +b20 −d1(x(t)+y(t)),
ABDρ

0,ty=−b8xy−b9x
2 −b10x

3 +b11y(1−y)−b12z−b13z
2 −b14z

3 +b21,

ABDρ

0,tz= b15y+b16y
2 +b17y

3 −b18z−b19yz−d3(x(t)+y(t)).
(2)

The last term in equation (2), specifically −d3(x(t) + y(t)), represents a control
mechanism introduced to stabilize the chaotic behavior of the glucose-insulin system.
This term accounts for the external influence on the system, ensuring that fluctuations
in glucose x(t) and insulin y(t) levels do not lead to uncontrolled chaos. The parame-
ter d3 regulates the strength of this control, helping to maintain system equilibrium by
dynamically adjusting the response of β -cells z(t) to changes in glucose and insulin
concentrations. This stabilization is crucial for applications such as insulin pump
therapy, where maintaining homeostasis is essential for diabetes management.

3. Preliminaries

This section provides key concepts and results related to the AB fractional
derivatives. Let us denote the Sobolev space of order 1 on the interval (x,y) ∈ R
as S1(x,y) :=

{
ϕ ∈ L2(x,y) : ϕ

′ ∈ L2(x,y), x < y
}
.

Definition 1 [27] The Atangana-Baleanu-Caputo (ABC) and Atangana-Baleanu-
-Riemann-Liouville (ABR) fractional derivatives of order ρ ∈ (0,1] are defined as
follows:

AB
x Dρ

0,tg(t) =
AB(ρ)

1−ρ

∫ t

x
Eρ

(
− ρ

1−ρ
(t − s)ρ

)
g′(s)ds, t > 0,

where AB(ρ(t)) =
s(ρ(t)+1−ρ(t))

s(ρ(t))
with a function g ∈ S1(x,y) and

ABDρ

0,tg(t) =
AB(ρ)

1−ρ

d
dt

∫ t

x
Eρ

(
− ρ

1−ρ
(t − s)ρ

)
g(s)ds, t > 0,

where Eρ,ρ(·) is the generalized Mittag-Leffler function [27] and AB(ρ) is a normal-
ization function with the property AB(0) = AB(1) = 1. 2

Definition 2 [27] The fractional integral of the AB derivative is defined as:

ABIρ

t [g(t)] =
1−ρ

AB(ρ)
g(t)+

ρ

AB(ρ)s(ρ)

∫ t

x
(t − s)ρ−1g(s)ds, t > 0.
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Definition 3 Let ρ ∈ (0,1] and F ∈ C([0,T ],R+). The fractional initial value
problem involving the AB derivative is formulated as follows:

AB
x Dρ

0,tg(t) = F (t), t ∈ [0,T ], with g(0) = g0,

which admits a unique solution given by:

g(t) = g0 +
1−ρ

AB(ρ)
F (t)+

ρ

AB(ρ)s(ρ)

∫ t

x
(t − s)ρ−1F (s)ds.

4. Existence and uniqueness

The fractional integral operator of Atangana-Baleanu is used in Eq. (1):

x(t)−x(0) = ABIρ

t

[
F1(t,x)

]
,

y(t)−y(0) = ABIρ

t

[
F2(t,y)

]
,

z(t)−z(0) = ABIρ

t

[
F3(t,z)

]
,

(3)

where the kernels F1, F2, and F3 are defined as:

F1(t,x) =−b1x+b2xy+b3y
2 +b4y

3 +b5z+b6z
2 +b7z

3 +b20,

F2(t,y) =−b8xy−b9x
2 −b10x

3 +b11y(1−y)−b12z−b13z
2 −b14z

3 +b21,

F3(t,z) = b15y+b16y
2 +b17y

3 −b18z−b19yz.

From Eq. (3) to Eq. (1), we obtain the Atangana-Baleanu fractional integral:

x(t)−x(0) =
1−ρ

AB(ρ)
F1(t,x)+

ρ

AB(ρ)s(ρ)

∫ t

0
F1(υ ,x)dυ ,

y(t)−y(0) =
1−ρ

AB(ρ)
F2(t,y)+

ρ

AB(ρ)s(ρ)

∫ t

0
F2(υ ,y)dυ ,

z(t)−z(0) =
1−ρ

AB(ρ)
F3(t,z)+

ρ

AB(ρ)s(ρ)

∫ t

0
F3(υ ,z)dυ .

Denote:

s1 = b1 +b2ρ3,s2 = b8ρ1 +b11(1+2ρ2),s3 = b18 +b19ρ2, (4)

where ρ1, ρ2, ρ3 are some positive constants.

Proposition 1 Assume x, y, and z are nonnegative bounded functions, i.e.
∥x(t)∥ ≤ ρ1, ∥y(t)∥ ≤ ρ2, ∥z(t)∥ ≤ ρ3, Assume the following inequality:

0 ≤ M = max{s1,s2,s3}< 1.

The kernels F1, F2, and F3 satisfy the Lipschitz condition. 2



Numerical solutions, stability, and chaos control of Atangana-Baleanu variable-order derivatives ... 49

PROOF The kernel F1 is considered. If we take x and x1 as two functions, we get:

∥F1(t,x)−F1(t,x1)∥= ∥(−b1 +b2z(t))(x(t)−x1(t))∥ ≤ (b1 +b2ρ3)∥x(t)−x1(t)∥
= s1∥x(t)−x1(t)∥.

Similar results hold for the kernels F2 and F3 using {y,y1} and {z,z1}, respectively:

∥F2(t,y)−F2(t,y1)∥ ≤ s2∥y(t)−y1(t)∥,
∥F3(t,z)−F3(t,z1)∥ ≤ s3∥z(t)−z1(t)∥,

where s1, s2, and s3 are defined in Eq. (4). Thus, the Lipschitz conditions are satisfied
for F1, F2, and F3, as in (3.4). Since 0 ≤ M = max{s1,s2,s3} < 1, the kernels
are contractions. Due to the Banach fixed-point theorem, the system is unique. ■

5. Ulam-hyers stability

Definition 4 [33] There exists a constant CF > 0 with the following property:
for each varepsilon > 0 and for each solution U ∗ ∈W satisfying the inequality.∥∥∥ABa Dρ

0,tU
∗(t)−F

(
t,U ∗(t)

)∥∥∥≤ ε, t ∈ J,

there exists a unique solution U ∈ W of (1) with initial condition U (0) = U ∗(0)
so that ∥∥∥U ∗(t)−U (t)

∥∥∥≤CF ε, for all t ∈ J,

with U ∗(t) :=

x∗(t)
y∗(t)
z∗(t)

 ,U ∗(0) :=

x∗(0)
y∗(0)
z∗(0)

 ,F
(

t,U ∗(t)
)

:=

F1(t,x∗)
F2(t,y∗)
F3(t,z∗)

 ,

ε = max

ε1
ε2
ε3

 ,CF := max

CF1

CF2

CF3

 . 2

This CF is referred to as a Ulam-Hyers stability constant.

Definition 5 Whenever there is a continuous function ΠF : J → R+ that solves the
fractional problem (1), it is said to be Ulam-Hyers stable. There exists one solution
U ∗ ∈W to (1), satisfying∥∥∥U ∗(t)−U (t)

∥∥∥≤ ΠF (ε), for all t ∈ J.

Remark 1 Considering the stability of the model, we take into account a small
perturbation Φ(t) ∈C(J) so that Φ(0) = 0 and the following properties are satisfied:

(i) |Φ(t)| ≤ ε for t ∈ J and ε > 0;
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(ii) AB
0 Dρ

0,tU
∗(t) = F

(
t,U ∗(t)

)
+Φ(t), for all t ∈ J, where Φ(t) =

Φ1(t)
Φ2(t)
Φ3(t)

. 2

Lemma 1 The solution U ∗
Φ(t) of the perturbed problem

AB
a Dρ

0,tU
∗(t) = F

(
t,U ∗(t)

)
+Φ(t), t ∈ J,U ∗(0) = U ∗

0 ,

satisfies the inequality ∣∣∣U ∗
Φ(t)−U ∗(t)

∣∣∣≤ ρε,

where ρ :=
[ 1−ρ

AB(ρ)
+

T ρ

AB(ρ)s(ρ)

]
. 2

PROOF We have

U ∗(t) = U ∗
0 +

1−ρ

AB(ρ)
F

(
t,U ∗(t)

)
+

ρ

AB(ρ)s(ρ)

∫ t

0
(t − s)ρ−1F

(
s,U ∗(s)

)
ds.

The difference between perturbed and unperturbed solutions satisfies:∣∣∣U ∗
Φ(t)−U ∗(t)

∣∣∣≤ 1−ρ

AB(ρ)
|Φ(t)|+ ρ

AB(ρ)s(ρ)

∫ t

0
(t − s)ρ−1|Φ(s)|ds.

Since it is assumed that |Φ(t)| ≤ ε for all t ∈ J, substituting this bound gives:∣∣∣U ∗
Φ(t)−U ∗(t)

∣∣∣≤ 1−ρ

AB(ρ)
ε +

ρ

AB(ρ)s(ρ)

∫ t

0
(t − s)ρ−1

ε ds.

The integral is computed as: ∫ t

0
(t − s)ρ−1ds =

tρ

ρ
.

Substituting this result:∣∣∣U ∗
Φ(t)−U ∗(t)

∣∣∣≤ 1−ρ

AB(ρ)
ε +

ρ

AB(ρ)s(ρ)
· tρ

ρ
ε.

Simplifying: ∣∣∣U ∗
Φ(t)−U ∗(t)

∣∣∣≤ [
1−ρ

AB(ρ)
+

tρ

AB(ρ)s(ρ)

]
ε.

Since t ∈ J and tρ ≤ T ρ for t ≤ T , replacing tρ by T ρ yields:∣∣∣U ∗
Φ(t)−U ∗(t)

∣∣∣≤ [
1−ρ

AB(ρ)
+

T ρ

AB(ρ)s(ρ)

]
ε.

Thus, the proof is complete. ■
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Theorem 1 Model (1) is Ulam-Hyers stable in W under Lemma 1 if

1−ρLF > 0.

PROOF Suppose U ∗ ∈W satisfies the inequality (5), and U ∗ is the unique solution
of problem (1) with the initial condition U (0) = U ∗(0) ⇐⇒ U0 = U ∗

0 . Then, by
Lemma 1, we have

U (t) = U ∗
0 +

1−ρ

AB(ρ)
F (t,U (t))+

ρ

AB(ρ)s(ρ)

∫ t

0
(t − s)ρ−1F (s,U(s))ds.

Thus, the proof is complete. ■

6. Sumudu transform (ST) solution to fractional model

In fractional models of glucose-insulin regulation, obtaining an exact solution
can be challenging. The ST will be applied iteratively to find an approximate solution.
The ST is combined with its inverse to achieve this. The ST of the fractional deriva-
tive is given by:

S
{
AB
0 Dρ

t Φ(t)
}
=

AB(ρ)

1−ρ

(
ρs(ρ +1)Eρ

(
− 1

1−ρ
uρ

))[
S(Φ(t))−Φ(0)

]
.

The ST and its inverse are represented in equations (1):

x(t) = x(0)+S−1
{

L ·S
[
F1(t,x)

]}
,

y(t) = y(0)+S−1
{

L ·S
[
F2(t,y)

]}
,

z(t) = z(0)+S−1
{

L ·S
[
F3(t,z)

]}
.

An iterative formula is proposed as follows:

xn+1(t) = x(0)+S−1
{

L ·S
[
F1(t,x)

]}
,

yn+1(t) = y(0)+S−1
{

L ·S
[
F2(t,y)

]}
,

zn+1(t) = z(0)+S−1
{

L ·S
[
F3(t,z)

]}
,

where L =
1−ρ

AB(ρ)ρs(ρ +1)Eρ

(
− 1

1−ρ
uρ

) is the fractional Lagrange multiplier.

It is assumed that the approximate solution can be obtained as the limit when n → ∞:
x(t) = lim

n→∞
xn(t),y(t) = lim

n→∞
yn(t),z(t) = lim

n→∞
zn(t).
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7. Atangana-Baleanu numerical scheme

We use Atangana-Baleanu derivatives with fractional order ρ as follows:

AB
0 D

ρ(t)
0,t Λ(t) = Φ(t,Λ(t)),

where Atangana-Baleanu derivatives are defined as weighted combinations of local
fractional derivatives and nonlocal memory terms. Numerical representation: at time
step tn+1:

Λn+1 = Λ0 +
1−ρ(t)
AB(ρ(t))

Φ(tn,Λn)+
ρ(t)

AB(ρ(t))

n

∑
τ=0

∫ tτ+1

tτ
Φ(s,y(s))(tn+1 −s)ρ(t)−1 ds.

To approximate the integral term, we use Lagrange interpolation for the function
Φ(s,y(s)). Interpolating between tτ and tτ+1, we have:

Φ(s,y(s))≈ Φ(tτ ,Λτ)

h
(s− tτ−1)−

Φ(tτ−1,Λτ−1)

h
(s− tτ).

Substituting this approximation into the integral, the numerical scheme becomes:

Λn+1 = Λ0 +
1−ρ(t)
AB(ρ(t))

Φ(tn,Λn)+
ρ(t)

AB(ρ(t))

n

∑
τ=0

[
Φ(tτ ,Λτ)

h

∫ tτ+1

tτ
(s− tτ−1)

× (tn+1 −s)ρ(t)−1 ds− Φ(tτ−1,Λτ−1)

h

∫ tτ+1

tτ
(s− tτ)(tn+1 −s)ρ(t)−1 ds

]
.

For a system of equations, the scheme can be extended as follows. Let F1,F2,F3
represent the right-hand sides of the system. Then:

xn+1 = x0 +
1−ρ(t)
AB(ρ(t))

F1(tn,xn)+
ρ(t)

AB(ρ(t))

n

∑
τ=0

[F1(tτ ,xτ)

h
×

∫ tτ+1

tτ
(s− tτ−1)

× (tn+1 −s)ρ(t)−1 ds− F1(tτ−1,xτ−1)

h
×

∫ tτ+1

tτ
(s− tτ)(tn+1 −s)ρ(t)−1 ds

]
,

with similar expressions for yn+1 and zn+1.

7.1. Numerical simulations

The numerical values are taken from Shabestari et al. [7]: x(0) = 0, y(0) = 1.5,
and z(0) = 1. Figures 1-2 show the comparison between the time series of system
(1), illustrated in (a)-(c), and the controlled system (2), illustrated in (d)-(f), for the
following cases: ρ(t) = 0.97+0.03cos(t/10), ρ(t) = 0.97+0.03 tanh(t/10).
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Fig. 1. Synchronization of system (1) illustrated in (a)-(c) and controlled system (2) illustrated in
(d)-(f) for ρ(t) = 0.97+0.03cos(t/10)
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Fig. 2. Synchronization of system (1) illustrated in (a)-(c) and controlled system (2) illustrated in
(d)-(f) for ρ(t) = 0.97+0.03 tanh(t/10)

8. Conclusion

In this study, the Atangana-Baleanu fractional derivative is used to develop
an advanced glucose-insulin regulatory model that incorporates long-term memory
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and non-local effects. However, integer-order models fail to capture the memory-
-dependent dynamics of physiological systems. In glucose-insulin interactions,
complex, chaotic feedback mechanisms are better represented by integrating the
Atangana-Baleanu derivative. Despite the increased computational complexity, its
accuracy and ability to account for long-term physiological changes justify its
implementation. This model includes a linear controller, which effectively stabilizes
chaotic fluctuations, enhancing its therapeutic potential in diabetes management.
Several challenges remain, including accurately capturing glucose-insulin interac-
tions, and tuning model parameters to reflect individual patient variability. However,
the fractional Atangana-Baleanu derivative model enhances the flexibility of glucose-
-insulin dynamics modeling, making metabolic responses more precise. As a result
of this refined approach to modeling, personalized treatment strategies may be devel-
oped, ultimately resulting in improved patient outcomes.
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