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Abstract. We discuss the form of local operators, sometimes called operators with memory,
acting between spaces of generalized Hölder functions defined on the compact metric
spaces and taking values in the special norm spaces. Using the McShane and the Minty
extension theorems, we show that in some cases the operators of such a type become
Nemytskij composition operators. Moreover, the uniformly bounded as well as the uniformly
continuous local operators acting between different Hölder function spaces are investigated.
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1. Introduction

Let (X ,ρ) be a metric space and Y , Z be arbitrary sets. By G = G (X ,Y ) and
H = H (X ,Z), let us denote two classes of functions ϕ : X → Y and ψ : X → Z,
respectively. A mapping K : G → H is said to be a locally defined operator (briefly,
a local operator or (G ,H )–local) if for any open set U ⊂ X and for any functions
f ,g ∈ G the following implication holds:

f
∣∣
U = g

∣∣
U ⇒ K( f )

∣∣
U = K(g)

∣∣
U .

The goal of this paper is to show that in the cases where G and H are two classes
of generalized Hölder functions defined on metric spaces and taking values in the spe-
cial norm spaces, every locally defined operator is a Nemytskij composition operator
(Corollary 1, Remark 4). Moreover, in Section 4, under the additional assumption
that local operators are uniformly bounded, applying the Matkowski result, we ob-
serve that the generators of operators of such a type must be affine with respect to the
second variable (Theorem 2, Remark 6). This extends the main result of [1] and [2]
for k = 0.
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The theory of the Nemytskij operators are closely connected with the theory of
integral equations, differential equations, variational calculus or with the optimization
theory. The Volterra integral operators on Banach spaces, like the Holder spaces, are
used in the mathematical modelling of phenomena where the memory effects play
a key role [3]. Similarly, the classical properties of the Nemytskij operators play
an essential role in the partial differential equations and arise, for example, in the
theory of the nonlinear diffusion process, in differential geometry and in the nuclear
or chemical reactor theory [4].

2. Preliminaries

In the sequel, by a φ -function we mean a function φ : [0,∞)→ [0,∞) such that φ

is right continuous at 0, φ(0) = 0, and both functions φ and (0,∞) ∋ t → t
φ(t)

are

increasing. A standard example is φ(t) = tα with α ∈ (0,1].

Remark 1 ([1], Remark 1) Every φ -function is continuous and subadditive, i.e.,

φ (s+ t)≤ φ (s)+φ (t) , s, t ∈ [0,∞).

Let (X ,ρX) be a metric space and (Y, | · |Y ) be a real normed space. Given
a φ -function, we define the space of Hölder functions Hφ ((X ,ρX),(Y, | · |Y )), briefly
Hφ (X ,Y ), as the family of all functions f : X → Y such that

Hφ ( f ) := sup
{

ω( f ,s)
φ(s)

: s > 0
}
< ∞,

where
ω( f ,s) := sup{| f (x)− f (x)|Y : x,x ∈ X , ρX(x,x)≤ s}

is the modulus of continuity of the function f . Of course, every function f ∈Hφ (X ,Y )
is continuous.

In other words, f ∈ Hφ (X ,Y ) if and only if the quantity

sup
{
| f (x)− f (x)|Y

φ(ρX(x,x))
: x,x ∈ X , x ̸= x

}
is finite or, equivalently, if and only if there exists a constant Hφ ( f )≥ 0 such that

| f (x)− f (x)|Y ≤ Hφ ( f )φ(ρX(x,x)); x,x ∈ X . (1)

Given x0 ∈ X , we can introduce ∥ · ∥Hφ (X ,Y ),x0 : Hφ (X ,Y )→ [0,∞) by

∥ f∥Hφ (X ,Y ),x0 := | f (x0)|Y +Hφ ( f ), f ∈ Hφ (X ,Y ). (2)

By ([5], Remark 2), the pair
(

Hφ ((X ,Y ),∥ · ∥Hφ (X ,Y ),x0

)
is a normed space. Moreover,

for any x0,x1 ∈ X , the norms ∥ · ∥Hφ (X ,Y ),x0 and ∥ · ∥Hφ (X ,Y ),x1 are equivalent. Thus,
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to simplify the notation, we shall write ∥ f∥Hφ (X ,Y ) instead of ∥ f∥Hφ (X ,Y ),x0 , for all
f ∈ Hφ (X ,Y ).

Fix x0 ∈ X . Let us notice that if we assume, additionally, that the metric space
(X ,ρX) is bounded, then, for all f ∈ Hφ (X ,Y ) and x ∈ X , we get

| f (x)|Y ≤ | f (x0)|Y + | f (x)− f (x0)|Y

= | f (x0)|Y +
| f (x)− f (x0)|Y

φ (ρX(x,x0))
φ (ρX(x,x0))

≤ | f (x0)|Y +Hφ ( f )φ (ρX(x,x0))≤ | f (x0)|Y +Hφ ( f )φ(diamX)

≤ | f (x0)|Y +Hφ ( f )+
(
Hφ ( f )+ | f (x0)|Y

)
φ(diamX)

= ∥ f∥Hφ (X ,Y ) (1+φ(diamX)) ,

where diamX denotes the diameter of the metric space X . Hence, the quantity

∥ f∥
∞

;= sup{| f (x)|Y : x ∈ X} , (3)

is finite and the following holds

∥ f∥
∞
≤ ∥ f∥Hφ (X ,Y ) (1+φ(diamX)) , (4)

for all f ∈ Hφ (X ,Y ).
Thus a functional ∥ · ∥∞

Hφ (X ,Y ) : Hφ (X ,Y )→ [0,∞), where

∥ f∥∞

Hφ (X ,Y ) := ∥ f∥
∞
+Hφ ( f ), f ∈ Hφ (X ,Y ), (5)

is well defined. By [5], it is a norm.

Remark 2 Let (Y, | · |Y ) be a real normed space and φ : [0,∞) → [0,∞) be
a φ -function. If a metric space (X ,ρX) is bounded, then the norms ∥ · ∥Hφ (X ,Y ) and
∥ · ∥∞

Hφ (X ,Y ) are equivalent. 2

Indeed, from (2)-(5) it follows that

∥ f∥Hφ (X ,Y ) ≤ ∥ f∥∞

Hφ (X ,Y ) ≤ ∥ f∥Hφ (X ,Y ) (2+φ(diamX)) ,

for all f ∈ Hφ (X ,Y ).

Lemma 1 Let a metric space (X ,ρX) be bounded, and let a φ -function be given.
Then, for all f ,g ∈ Hφ (X ,R), the following holds

∥ f g∥∞

Hφ (X ,R) ≤ ∥ f∥∞

Hφ (X ,R)∥g∥∞

Hφ (X ,R). (6)

PROOF Take any f ,g ∈ Hφ (X ,R). Without loss of generality, we may assume that
the quantities ∥ f∥∞

Hφ (X ,R), ∥g∥∞

Hφ (X ,R), Hφ ( f ), Hφ (g) are strictly positive. Since,
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for all x,x ∈ X , by (1), we have

|( f g)(x)− ( f g)(x)|
φ(ρX(x,x))

=
| f (x)g(x)− f (x)g(x)+ f (x)g(x)− f (x)g(x))|

φ(ρX(x,x))

≤ | f (x)| |g(x)−g(x)|
φ(ρX(x,x))

+ |g(x)| | f (x)− f (x)|
φ(ρX(x,x))

≤ ∥ f∥
∞

Hφ (g)+∥g∥
∞

Hφ ( f ),

therefore

Hφ ( f g)≤ ∥ f∥
∞

Hφ (g)+∥g∥
∞

Hφ ( f ).

Hence, we obtain the following estimates

∥ f g∥∞

Hφ (X ,R) ≤ ∥ f g∥
∞
+∥ f∥

∞
Hφ (g)+∥g∥

∞
Hφ ( f )

≤ ∥ f∥
∞

(
∥g∥

∞
+Hφ (g)

)
+∥g∥

∞
Hφ ( f )

≤ ∥ f∥
∞
∥g∥∞

Hφ (X ,R)+∥g∥∞

Hφ (X ,R)Hφ ( f )

≤ ∥ f∥∞

Hφ (X ,R)∥g∥∞

Hφ (X ,R),

which gives (6), and the proof is completed. ■

Remark 3 If a metric space (X ,ρX) is bounded and (Y, | · |Y ) is complete, then the
pair

(
Hφ ((X ,Y ),∥ · ∥Hφ (X ,Y )

)
or, equivalently,

(
Hφ ((X ,Y ),∥ · ∥∞

Hφ (X ,Y )

)
is a Banach

space [6]. Moreover,
(

Hφ ((X ,R),∥ · ∥Hφ (X ,R)

)
is a Banach algebra. 2

Given two φ -functions φ and ψ, we write φ ≼ ψ if φ(t) = O(ψ(t)), for t → 0
(where O is Landau’s symbol), i.e., if there exist numbers P > 0 and δ > 0 such that

φ (t)≤ Pψ (t) , 0 < t ≤ δ . (7)

Lemma 2 Let (X ,ρX) be a bounded metric space and (Y, | · |Y ) be a real normed
space. Suppose that φ and ψ are two φ -functions. From φ ≼ ψ it follows that
Hφ (X ,Y )⊂ Hψ(X ,Y ), and there exists a positive constant γ such that

∥ f∥Hψ (X ,Y ) ≤ γ∥ f∥Hφ (X ,Y ), f ∈ Hφ (X ,Y ). (8)

PROOF By the assumption, there exist positive numbers P and δ such that (7) is
fulfilled. Take any f ∈ Hφ (X ,Y ). Then, there exists a constant Hφ ( f ) satisfying (1)
for all x,x ∈ X . Hence, in the case where ρX(x,x)≤ δ , x,x ∈ X , we have

| f (x)− f (x)|Y ≤ Hφ ( f )φ(ρX(x,x))≤ PHφ ( f )ψ(ρX(x,x)). (9)

Now, suppose that x,x ∈ X and ρX(x,x)> δ . Since ψ is monotonically increasing,

ψ (ρX(x,x))> ψ (δ ) . (10)
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Then, by (1), (10), and the boundedness of X , we obtain

| f (x)− f (x)|Y =
| f (x)− f (x)|Y

φ(ρX(x,x))
φ(ρX(x,x))
ψ(ρX(x,x))

ψ(ρX(x,x))

≤ Hφ ( f )
φ (diamX)

ψ (δ )
ψ(ρX(x,x)),

for x,x ∈ X such that ρX(x,x)> δ . Thus, putting

γ = γ (φ ,ψ) := max
{

P,
φ (diamX)

ψ (δ )

}
,

by (9), it follows that

| f (x)− f (x)|Y ≤ γHφ ( f )ψ(ρX(x,x)),

for all x,x ∈ X . Therefore, f ∈ Hψ(X ,Y ), by (1) with Hψ( f ) := γHφ ( f ), and, setting
γ = γ +1, (8) is fulfilled, which gives a required claim. ■

3. Main results

We will start with the following definitions.

Definition 1 Let G = G (X ,Y ) and H = H (X ,Z) be two function spaces. We say
that an operator K : G → H has a point-memory property, if for every f ,g ∈ G and
x0 ∈ X , from f (x0) = g(x0) it follows that K( f )(x0) = K(g)(x0). 2

Definition 2 Let X ,Y,Z be arbitrary nonempty sets and let h : X ×Y → Z. Denote by
Y X the family of all functions f : X → Y . A mapping H : Y X → ZX defined by

H( f )(x) = h(x, f (x)), f ∈ Y X (x ∈ X),

is called a Nemytskij (composition, superposition) operator, and the function h is
referred to as a generator of H. 2

Theorem 1 Let G = G (X ,Y ) and H = H (X ,Z) be two function spaces such that
all constant functions defined on X are contained in G . If an operator K mapping G
into H has a point-memory property, then K is a Nemytskij superposition operator,
i.e., there exists a unique function h : X ×Y → Z such that, for all f ∈ G ,

K( f )(x) = h(x, f (x)), x ∈ X .

PROOF Given y0 ∈ Y , let us define a function Py0 : X → Y by

Py0(x) := y0, x ∈ X . (11)
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Of course Py0 , as a constant function, by assumption, belongs to G . To define the
function h : X ×Y → Z, fix arbitrarily x0 ∈ X , y0 ∈ Y , and put

h(x0,y0) := K(Py0)(x0). (12)

Since, by (11), for all functions f ,

f (x0) = Pf (x0)(x0),

by the point-memory property of K, we have

K( f )(x0) = K(Pf (x0))(x0) = h(x0, f (x0)).

As the uniqueness of the function h is obvious, the proof is completed. ■

Theorem 2 Let (X ,ρX) be a compact metric space, (Z, | · |Z) be a real normed space,
and let φ , ψ be two φ -functions. Then, every locally defined operator K : Hφ (X ,R)→
Hψ(X ,Z) has a point-memory property. 2

PROOF We have to show that for all f ,g ∈ Hφ (X ,R) and x0 ∈ X , if

f (x0) = g(x0), (13)

then

K( f )(x0) = K(g)(x0). (14)

To this end fix arbitrarily x0 ∈ X and take a pair of functions f ,g∈Hφ (X ,R) fulfilling
(13). Clearly, if x0 is an isolated point of X , we get (14) directly from the definition of
a local operator. Assume that x0 is a cluster point of X . Choose a one-to-one sequence
of points xn ∈ X such that lim

n→∞
xn = x0 and

n ̸= m ⇒ ρX (xn,xm)>
1
2

max{ρX (xn,x0) ,ρX (xm,x0)}. (15)

Put

rn :=
1
6

ρX (xn,x0) , n ∈ N. (16)

Then, for all

x ∈ B(xn,rn), y ∈ B(xm,rm); n ̸= m, n,m ∈ N, (17)

the following inequalities are fulfilled:

ρX (x,x0)≤ 7ρX (x,y) , ρX (y,x0)≤ 7ρX (x,y) (18)

(the symbol B(x,r) denotes the ball centered at x and the radius r).
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Indeed, by the triangle inequality, (15) and (16), for all x,y satisfying (17), we get

1
2

max{ρX (xn,x0) ,ρX (xm,x0)} ≤ ρX (xn,xm)

≤ ρX (xn,x)+ρX (x,y)+ρX (y,xm)≤ rn +ρX (x,y)+ rm

=
1
6

ρX (xn,x0)+ρX (x,y)+
1
6

ρX (xm,x0)≤ ρX (x,y)+
2
6

max{ρX (xn,x0) ,ρX (xm,x0)},

whence

ρX (x,y)≥ 1
6

max{ρX (xn,x0) ,ρX (xm,x0)}. (19)

Moreover, by (16) and (17),

ρX (x,x0)≤ ρX (x,xn)+ρX (xn,x0)≤ rn +ρX (xn,x0) =
7
6

ρX (xn,x0) , n ∈ N,

and, analogously,

ρX (y,x0)≤
7
6

ρX (xm,x0) .

Hence, making use of (19), we obtain (18).
Putting

B1 :=
⋃

n∈N
B(x2n−1,r2n−1), B2 :=

⋃
n∈N

(x2n,r2n),

define γ : B1 ∪B2 ∪{x0}→ R by the formula

γ(x) :=


f (x) if x ∈ B1
f (x0) if x = x0
g(x) if x ∈ B2

.

We shall show that there exists Hφ (γ) ∈ R+ such that

|γ(x)− γ(y)| ≤ Hφ (γ)φ(ρX (x,y)), (20)

for all x,y ∈ B1 ∪B2 ∪{x0}.
Since f ∈ Hφ (B1 ∪{x0}) and g ∈ Hφ (B2 ∪{x0}), there exist Hφ ( f ),Hφ (g) ∈ R+

such that

| f (x)− f (x)| ≤ Hφ ( f )φ(ρX (x,x)); x,x ∈ B1 ∪{x0}, (21)

and

|g(y)−g(y)| ≤ Hφ (g)φ(ρX (y,y)); y,y ∈ B2 ∪{x0}. (22)

Of course, if x,y ∈ B1 ∪ {x0} or x,y ∈ B2 ∪ {x0}, then (20), by (21) and (22),
is obvious. Take x ∈ B1 ∪{x0} and y ∈ B2 ∪{x0}.
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Taking into account the definition of γ, (13), (21) and (22) with x = y = x0,
we have

|γ(x)− γ(y)| ≤ |γ(x)− γ(x0)|+ |γ(y)− γ(x0)|
= | f (x)− f (x0)|+ |g(y)−g(x0)|
≤ Hφ ( f )φ(ρX (x,x0))+Hφ (g)φ(ρX (y,x0)),

and, consequently, by (18), the monotonicity and the subadditivity of φ , we get

|γ(x)− γ(y)| ≤ 7Hφ ( f )φ(ρX (x,y))+7Hφ (g)φ(ρX (x,y)).

Thus, γ ∈ Hφ (B1 ∪B2 ∪{x0}) and fulfils (20) with a constant
Hφ (γ) := 14max{Hφ ( f ),Hφ (g)}.

Since, by Remark 1, φ ◦ρX is a metric, therefore, applying the McShane extension
theorem, with ∥ · ∥ := φ ◦ ρX ([7], Theorem 1), we get the existence of a function
γ ∈ Hφ (X ,R) such that

γ|B1 = f |B1 , γ|B2 = g|B2 ,

and, by the definition of a local operator,

K(γ)|B1 = K( f )|B1 , K(γ)|B2 = K(g)|B2 .

The continuity of the functions K(γ),K( f ) and K(g) at x0 implies (14), which
completes a proof. ■

By Theorems 1-2, we get the following

Corollary 1 Every locally defined operator K : Hφ (X ,R)→Hψ(X ,Z), where (X ,ρX)
is a compact metric space and (Z, | · |Z) is a real normed space is a Nemytskij super-
position operator. 2

Remark 4 Let φ(t) = φα(t) = tα , t ≥ 0. Making use of Minty’s extension theorem
([8], Theorem 1) and using analogous methods, it follows that Theorem 2 and Corol-
lary 1 remain valid on replacing

1. Hφ (X ,R) by Hφα
(X ,Y ), where (Y, |·|Y ) is a Hilbert space and α ∈ (0,

1
2
];

2. Hφ (X ,R) by Hφα
(X ,Y ) and (X ,ρX) by

(
X ′, |·|X ′

)
, where

(
X ′, |·|X ′

)
, (Y, |·|Y )

are Hilbert spaces and α ∈ (0,1]. 2

4. A remark concerning uniform boundedness of local operators

In this section an important role plays the following
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Definition 3 ([5], Definition 1). Let Y and Z be metric (or normed) spaces.
A mapping H : Y → Z is said to be uniformly bounded, if for any t > 0 there is
a nonnegative real number γ(t) such that for any set B ⊂ Y we have

diamB ≤ t ⇒ diamH(B)≤ γ(t).

Theorem 3 Let (X ,ρX) be a compact metric space and (Z, | · |Z) be a real normed
space.

(i) If a locally defined operator K: Hφ (X ,R)→ Hψ(X ,Z), generated by a func-
tion h : X ×R → Z such that for any x ∈ X a function h(x, ·) : R → Z is contin-
uous with respect to the second variable, is uniformly bounded, then there exist
α ∈ Hψ(X ,L(R,Z)) and β ∈ Hψ (X ,Z) such that

K( f )(x) = α(x) f (x)+β (x), f ∈ Hφ (X ,R) (x ∈ X) (23)

(here L(R,Z) denotes a normed space of all linear and continuous mappings
α : R→ Z).

(ii) Conversely, let φ ≼ ψ . If an operator K : RX → ZX is defined by (23) for some
functions α,β ∈ Hφ (X ,R), then it maps Hφ (X ,R) into Hψ(X ,R), is locally defined,
and satisfies the global Lipschitz condition (so it is uniformly bounded). 2

PROOF (i) This part of the theorem is an immediate consequence of Corollary 1 and
the Matkowski result ([5], Theorem 4.3).

(ii) Since φ ≼ ψ , therefore Hφ (X ,R) ⊂ Hψ(X ,R), by Lemma 2, and since
Hψ(X ,R) is a Banach algebra, by Remark 3, it follows that the operator given by
(23) maps Hφ (X ,R) into Hψ(X ,R). Of course, every operator defined by (23) is
locally defined.

Now, for all f ,g ∈ Hφ (X ,R), Remark 2, formulas (6), (8), and (23) lead to the
following estimates

∥K( f )−K(g)∥Hψ (X ,R) ≤ ∥K( f )−K(g)∥∞

Hψ (X ,R) ≤ ∥α∥∞

Hψ (X ,R)∥ f −g∥∞

Hψ (X ,R)

≤ (2+φ(diamX))∥α∥∞

Hψ (X ,R)∥ f −g∥Hψ (X ,R)

≤ γ (2+φ(diamX))∥α∥∞

Hψ (X ,R)∥ f −g∥Hφ (X ,R),

which shows that K is Lipschitzian and a proof is completed. ■

Remark 5 In a special case when a local operator K : Hφ (X ,R)→ Hψ(X ,R) is
uniformly continuous (with respect to the norms) and X ⊂ R is a compact interval,
the form of K given by (23), for some α,β ∈ Hψ(X ,R), can be obtained directly
from Corollary 1 and Matkowski’s result ([9], Remark 5), without any additional
assumptions on the generating function h. 2

Definition 4 ([10], Definition 6.26) We say that the pair (G (X ,Y ),H = H (X ,Z))
has the uniform Matkowski property, if the generator h of the uniformly bounded
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Nemytskij superposition operator H : G(X ,Y ) and H = H(X ,Z) has the form

h(x,y) = α(x)y+β (x), x ∈ X , y ∈ Y,

for some α ∈ L(Y,Z) and β ∈ Hψ (X ,Z) . 2

Remark 6 The pair
(
Hφ (X ,R),Hψ(X ,Z)

)
has the uniform Matkowski property,

where (X ,ρX) is a compact metric space and (Z, | · |Z) is a real normed space. 2

Remark 7 Under the assumptions of Theorem 3, if a locally defined operator K :
Hφ (X ,R)→ Hψ(X ,Z) is uniformly continuous, then there exist α ∈ Hψ(X ,L(R,Z))
and β ∈ Hψ (X ,Z) such that (23) is fulfilled. 2

Remark 8 Let φα(t) = tα , t ≥ 0. Then, applying Matkowski’s result [5] and Remark
4 again, we conclude that Theorem 3 (i) remains true if we

1. Hφ (X ,R) replace by Hφα
(X ,Y ), where (Y, |·|Y ) is a Hilbert space and

α ∈ (0,
1
2
];

2. Hφ (X ,R) replace by Hφα
(X ,Y ) and (X ,ρX) by

(
X ′, |·|X ′

)
, where

(
X ′, |·|X ′

)
,

(Y, |·|Y ) are Hilbert spaces and α ∈ (0,1]. 2

5. Conclusion

The locally defined operators were studied mainly in the context of operators
acting between the spaces of real-valued functions defined on the closed subsets of
Rn. Now, we describe operators of such a type acting between the spaces of gener-
alized Hölder functions taking values in Hilbert normed spaces or defined on com-
pact metric spaces. More precisely, we prove that very local operator K mapping the
space of Hölder functions Hφ (X ,R) defined on compact metric spaces (X ,ρX) and
taking values in R into another Hölder space Hψ(X ,Z) of functions taking values in
a real normed space (Z, | · |Z) is a Nemytskij superposition operator. We notice that
this result remains valid on replacing R by Hilbert space (Y, |·|Y ) in the case where

φ(t) = tα and α ∈ (0,
1
2
] or on replacing (X ,ρX) by Hilbert space

(
X ′, |·|X ′

)
and R

by Hilbert space (Y, |·|Y ) in the case where φ(t) = tαand α ∈ (0,1]. Moreover,
we observe that the pair

(
Hφ (X ,R),Hψ(X ,Z)

)
has the uniform Matkowski property.

This extends the main results of [1] and [2] for k = 0.
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