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Abstract. In the present paper I give parametric formulas of integrals of meromorphic 

forms in the case of C
2
. 

1. Parametrizations of integrals at finity 

Integrals of meromorphic forms occur in the definition of residue. Let us  

remind then the definition of residue of holomorphic mapping at a point. To retain 

symmetry with second part of this paper we will limit to the case of C
2
. Let  

f = (f1, f2) be holomorphic mapping in the neighbourhood of point α = (α1, α2) ∈ C
2
 

with zero isolated at this point; and g  holomorphic function in the neighbourhood 

of point α. As residue of pair g, f at point a  we define an integral of the form 

(s.[1, 2]) 
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where ( ) ( ){ }ε=ε==Γ zfzfz
a 21

,:  is sufficiently small real two-cycle in the 

neighbourhood of point α with positive orientation given by nowhere not di-

sappearing on Γα form ( ) ( ) .argarg
21
fdfd ∧  

Calculating of residue we might then reduce to calculus of residues of mero-

morphic functions of one variable. However if the germ of function f1 in point α 

has reduced decomposition then 
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for z from some neighbourhood of point α. Then (s. [3]) 
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where Φj is parametrization of the set of zeros of function jf1  defined in the 

neighbourhood of point 0 at C, Φj(0) = α, j = 1,..., m, a Jac f denote a Jacobian  

of the mapping f. Thus the integral of meromorphic two-form is reduced to the 

integrals of meromorphic functions 
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where Cj are sufficiently small positively oriented circles with the center in point 0 

at C. Similarly, if the germ of function f2 at point α has reduced decomposition, 

then
 

 ( ) ( ) ( )zfzfzf
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for z from some neighbourhood of point α, thus 

 
( )
( ) ( )

( )( )
( )( )

( )( )
( )( )

dt
tf

tf

tf

tg
i

zfzf

dzdzzg

k

k

nk C k

k

ka

Ψ

′
Ψ

Ψ

Ψ
π=

⋅

∧

∑ ∫∫
≤≤Γ 1

1

121

21

Jac
2  

where Ψk is parametrization of the set of zeros of function f2k defined in the neigh-

bourhood of point 0 at C, Ψk(0) = α, k = 1,..., n. 

Applying above parametric formulas we obtain the given relation between inte-

grals of following two-forms (s. [4]) 
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 for 0≥σ  

2. Parametrizations of integrals at infinity  

Integrals of rational forms occurs in definition of residue at infinity. At the be-

ginning let us assume the following definitions. For polynomial h of two variables 

we define polynomial 

 ( ) 







=

1

2

1

deg
121 ,

1
,

~

X

X

X
hXXXh
h

 

and for point ( ) 2
P∈= yp :1:0  its affine image ( ) .,0~ 2

C∈= yp  
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Let f = (f1, f2) be polynomial defined on C
2
 of components relatively prime and 

different then constants while g be arbitrary polynomial of two variables. Let us 

denote .3degdegdeg
21

−−+=σ gff  The residue of pair g, f at infinity  we define 

by the formula (s. [4, 5]) 
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 for σ < 0 

where l∞ represents the line at infinity over C
2
, while C1 i C2 are the closers at P

2
 of 

curves f1 = 0 and f2 = 0, respectively. In the second part of definition we additional-

ly assume that ( )
∞

∩∉ lC
1

1:0:0  and ( ) ,1:0:0
2 ∞
∩∉ lC  what in fact just simpli-

fies the notation (s. [4]). The integrals of forms occurring in expression of  residue 

at infinity we may now parametrize. Let σ ≤ 0 and let ( ) .

21 ∞
∩∩∈ lCCc  If the 

germ of function 
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f  at point c~  has a reduced decomposition, then 
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for x from some neighbourhood of point .
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c  Then 
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where ( ) ( )( )ttt jj
j ϕ=Φ

µ
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 is parametrization of the set of zeros of function jf1
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 in 

the neighbourhood of point 0 at C, ,,...,1,~)0(
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Similarly, if the germ of function 
2

~

f  at point c~  has reduced decomposition, then 
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for x from some neighbourhood of point .
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where ( ) ( )( )ttt
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defined in the neighbourhood of point 0 at .,...,1,~)0(
~

, qkc
k

==ΨC   The residue at 

point ( )
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 at infinity we may, in this case, define as  
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Let σ < 0 and let .
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decomposition, then 
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Similarly, let σ < 0 and let .
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for x from some neighbourhood of point .
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b  Then 
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Let us now observe that if a = b and σ < 0, then the  residues  I and II are con-

nected by equation 
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