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Abstract. In this paper an application of the Green’s function method in frequency analysis 

of a beam with varying cross section is presented. The beam carries an arbitrary number  

of attached discrete systems. The exact solution of the problem concerns a beam with quad-

ratically varrying cross-section area. Numerical examples show the influence of the selected 

parameters on free vibration frequencies of the considered system are presented. 

Introduction 

The free vibration problem for a uniform beams carrying various concentrated 

elements has been studied extensively by a lot of reaserchers. For example Wu and 

Chou [1] present vibration analysis of a uniform cantilever beam carrying any 

number of elastically mounted point masses by the application of the analytical-

and-numerical-combined method. For a non-uniform beam, even without any  

attachements, exact solution of the vibration problem may be obtained only for 

some, fixed forms of varrying cross-section areas. 

In literature there are presented the solutions of the vibration problems of non-

uniform beams determined by using various methods. Abrate in his paper [2] to 

solve the problem uses the Rayleigh-Ritz approach. The exact solution for the 

beam with variable cross-section A(ξ) and moment of inertia I(ξ), with various 

boundary conditions and attached any number of spring-mass systems was pre-

sented in [3]. Chen and Wu use the numerical assembly method to perform the free 

vibration analysis of Bernoulli-Euler non-uniform beam carrying any number of 

concentrated attachements. 

This paper presents the exact solution of the vibration problem of the non-

uniform beam which is obtained by using the Green’s function method. The prob-

lem formulation constitutes the Bernoulli-Euler differential equation and the 

boundary conditions corresponding to the cantilever beam. It is assumed that on 

the beam an arbitrary number of discrete elements (masses or translational springs) 

are attached. The neccesary Green’s function corresponding to the considered 

beam is determined. The solution of the problem concerns the beams with quad-

ratically varrying cross-section areas. Using the obtained frequency equation of the 

considered vibrational system, the numerical analysis is performed. 
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1. Formulation and solution of the problem 

Consider a non-uniform beam of length L with n springs and/or masses  

attached at points xi, i = 1,2,…,n, of the beam (Fig. 1). It is assumed that b0, h0 are 

the widht and height of the cross-section at x = 0, bL, hL are width and height at  

x = L, respectively. According to the Euler-Bernoulli theory, the equation of  

motion for the considering beam is 

 ( ) ( ) ( )
2 2 2

2 2 2

w(x, t) w(x, t)
EI x A x f x, t

x x t

 ∂ ∂ ∂
+ ρ = ∂ ∂ ∂ 

   (1) 

where A(x) is the cross-section area at the position x, I(x) is the moment of inertia 

of A(x), E denotes Young’s modulus, ρ is the mass density of the beam material, 

w(x,t) is the transverse deflection at position x and time t. The function w(x,t) 

satysfies homogeneous boundary conditions which may be symbolically written in 

the following form: 

 ( )0
x 0

w x, t 0B
=

  =  , ( )1
x L

w x, t 0B
=

  =    (2) 

where B0 and B1 are two dimensional “vectors”, the components of which are  

linear, spatial differential operators. 

 

 

Fig. 1. A sketch of a considering non-uniform beam with an additional spring-mass discrete 

elements 
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The form of the function f(x,t) depends on the nature of attached discrete sys-

tems. In the considered problem, the function is assumed in the following form: 

 ( )
( )

( ) ( )
2n

j j j2
j 1

w x, t
f x, t m k w x, t δ x x

t
=

 ∂
= − + − 

∂  
∑  (3) 

where δ( ) is the Dirac delta function, mi and ki denote masses and spring constants 

characterising the mounted discrete elements, respectively.  

Free vibrations of the beam are harmonic, i.e. the function w(x,t) takes the form 

 ( ) ( ) i t
w x t W x e,

ω

=    (4) 

where i 1= − , ω is the natural frequency of the beam and ( )W x  is the amplitude 

of deflection. Further, it is assumed that 
L 0 L 0

b b h h α= =  and 

 ( )
2

0

1
A x A x 1

L

α − 
= + 

 
,     ( )

4

0

1
I x I x 1

L

α − 
= + 

 
  (5) 

where α ≠1, A0 = A(0), I0 = I(0) in equation (1). 

The substitution of the equations (4) and (5) into the equation (1) yields 

 
( )

( )
4 222

2

0 02 2

d W xd 1 1
EI x 1 A x 1 W x

dx L dx L

 α − α −   + −ω ρ + =    
     

 

 ( ) ( )
n

2

j j j

j 1

m k W x x x

=

 = ω − δ − ∑  (6) 

 

Next, the non-dimensional coefficient 

 
α 1

ξ x 1
L

−

= + ,  ξ 1,α∈    (7) 

is introduced into the differential equation (6) and the boundary conditions (2). 

The differential equation and the boundary conditions take the following form: 

 
( )

( ) ( ) ( )
422 n

4 2 2 2

j j j2 2
j 1

d Wd
W W

d d 2
=

 ξ β   ξ − ξ ξ = µ ω −Λ ξ δ ξ −η     ξ ξ   
∑   (8) 

 ( )0
ξ 1

W ξ 0
=

  = B , ( )1
ξ α

W ξ 0
=

  = B   (9) 
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where 4 2

0 0
A EIΩ =ω ρ , ( )2L 1β = Ω α − , ( )

33

i i 0
m L EI 1µ = α − , 

j j j
k mΛ =  

and ( )i iη 1 α 1 x L= + −  for j = 1,2,...,n. 

The solution of the problem (8)-(9) is obtained by using the Green’s function 

method. Assuming, that the Green’s function is known, the solution of the consi-

dered boundary problem can be expressed as the following sum [4]: 

 ( ) ( ) ( )
n

2 2

j j j j

j 1

W W

=

 ξ = µ ω −Λ η δ ξ − η ∑    (10) 

Substituting ξ = ηj j = 1,2,...,n, successively into equation (10), a set of n equations 

with unknown W(ηj) (j = 1,2,…,n) one obtains. The determinant of the coefficient 

matrix of the equations system must disappear to exist non-trivial solution of the 

considered boundary problem. It yields the frequency equation 

 det A = 0  (11) 

where i j
1 i, j n

a
≤ ≤

 =  A , ( )2 2

i j j j i j i j
a G , = µ ω −Λ η η + δ   and δij is the Kronecker 

delta. The equation (11), with unknown ω, is then solved numerically. 

2. Green’s function 

The Green’s function of the differentional operator  

 

42 2
4 2

2 2

d d

d d 2
L

  β = ξ − ξ   ξ ξ   
  (12) 

satisfies the equation 

 ( ) ( )G ,L  ξ η = δ ξ −η    (13) 

and the following boundary conditions 

 ( )0
ξ 1

G ξ,η 0
=

  = B , ( )1
ξ α

G ξ,η 0
=

  = B   (14) 

The function G may be written as a sum [4] of function G0 which is the general 

solution of the homogeneous equation ( )0
G , 0L  ξ η =   and GS which is the parti-

cular solution of the equation (13). The particular solution GS can be written in the 

form: GS(ξ,η) = G1(ξ,η)H(ξ-η) where H( ) is the Heaviside function. The function 

G1 fulfill the homogeneous equation [4] 

 [ ]1G 0=L   (15) 
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and the conditions below: 

 ( )
( ) ( ) ( )2 3

1 1 1

1 2 3 4

dG , d G , d G , 1
G , 0,

d d dξ=η

ξ=η ξ=η ξ=η

ξ η ξ η ξ η
ξ η = = = =

ξ ξ ξ η
  (16) 

The general solution of (15) is expressed by well-known Bessel functions [3, 5]: 

 ( ) ( ) ( ) ( ) ( )1

1 1 2 2 2 3 2 4 2
G , c J c Y c I c K

−  ξ η = ξ β ξ + β ξ + β ξ + β ξ    (17) 

Taking into account (17) in equations (16), one obtains a set of four equations with 

unknown c1, c2, c3, c4. After the solution of the equation system, the function 

G1(ξ,η) can be written in the form: 

 ( ) ( ) ( ) ( ) ( ) ( )
1

2

1 2 2 2 2
G , 4 I K I K

− ξ η = β ηξ β ξ β η − β η β ξ +


 

 ( ) ( ) ( ) ( )( )2 2 2 2
J Y J Y

2

π 
+ β ξ β η − β η β ξ 

  (18) 

 Finally, the Green’s function of the differential problem (13)-(14) takes the form: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1

1 2 2 2 3 2 4 2

1

G , C J C Y C I C K

G , H

−  ξ η = ξ β ξ + β ξ + β ξ + β ξ + 
+ ξ η ξ −η

  (19) 

Unknown coefficients Ci, i = 1,2,3,4, occurring in the equation (19), are deter-

mined on the basis of the boundary conditions (14). 

 For example, the conditions (14) for a cantilever beam (Fig. 1) are as follows: 

 ( )
( ) ( ) ( )2 3

2 31

1

dG , d G , d G ,
G , 0, 0

d d dξ=

ξ= ξ=α ξ=α

ξ η ξ η ξ η
ξ η = = = =

ξ ξ ξ
  (20) 

The Green’s function G(ξ,η) of the differential operator L is defined by the equa-

tions (18) and (19) where coefficients Ci for i = 1,2,3,4 are as follows: 

( ) ( ) ( ) ( )
( )1 2

f , b e , d2
C ,

w

α η α + α η α−
= ⋅
β η α

 
( ) ( ) ( ) ( )

( )2 2

f , a e , c2
C ,

w

α η α + α η α
= ⋅
β η α

  

 
3 1 1 2 2

C C C ,= φ + φ  
4 3 1 4 2

C C C= φ + φ   (21) 

The functions a(α), b(α), c(α), d(α), e(α,η), f(α,η) are further presented in  

Appendix. 
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3. Numerical examples 

Assuming just one discrete spring-mass element, mounted at free end of the 

beam, the frequency equation (11) is obtained in the form 

 ( ) ( )2 2

1 1
1 G , 0+µ Λ −ω η η =   (22) 

where η = α. The Green’s function in (22) takes form (18), where G1 is presented 

in (19) and coefficients Ci (i = 1,2,3,4) are defined in (21). 

In the numerical examples the following values of parameters characterizing 

physical and geometrical properties of the beam are assumed: L = 1.0 m, 

E = 2.069 ⋅ 10
11
 N/m

2
, b0 = 0.02 m, h0 = 0.04 m, ρ = 7950 kg/m

3
, 

( )
2

1

1 0 3

*
m m A L 1 = ⋅ρ α − + α 

, k1 = k
* 
⋅ EI0/L

3
, A(x) and I(x) are defined by (4). 

Constant value m
* 
= 0.2 means that mass point is one fifth of the total mass of 

the beam, k
* 
= 3.0 represents one third of the spring constant of the considered 

beam. 
 

Table 1 

Nondimensional frequency parameter values Ωi for the first four modes  

of vibration for a clamped-free beam with a cross-section area parameter α 
 

α Ω1 Ω2 Ω3 Ω4 

3 1.43819 5.19175 9.89457 14.22343 

2.75 1.47253 5.10765 9.63322 13.83672 

2.5 1.51106 5.01820 9.36038 13.43245 

2.25 1.55474 4.92243 9.07420 13.00786 

2 1.60486 4.81902 8.77228 12.55942 

1.75 1.66318 4.70614 8.45138 12.08244 

1.5 1.73216 4.58113 8.10705 11.57054 

1.25 1.81537 4.43992 7.73288 11.01473 

 

Table 1 shows the first four non-dimensional frequency parameters Ωi (i = 

1,2,3,4) of the beam as a function of parameter 
L 0 L 0

α b b h h= = . It may be ob-

served that increase of the value of α (parameter characterizing the non-uniformity 

of the beam) causes decrease of the first frequency parameter Ω1 and increase of 

the Ωi for i = 2,3,4. 

In the case of the cantilever beam carrying one discrete element at 
1
η 1,α∈ , 

the frequency equation is obtained by assuming 
1

η η=  in equation (22). Figure 2 

presents frequency parameter values Ωi for the first four modes of vibration as 

functions of 
1
η  for the considered beam with the various cross-section A(ξ) = ξ

2
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and the moment of inertia I(ξ) = ξ
4
 where ξ is given by eg. (7) and α = 2.0  

(Fig. 2a), α = 3.0 (Fig. 2b). Figure 2 shows that change of the location of the 

spring-mass system on the beam carries weight on the higher frequency values. 
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Fig. 2. Frequency parameter values Ωi for the first four modes of vibration as a function                

of 
1
η : a) α = 2.0, b) α = 3.0 

Conclusions 

The free vibration problem of a non-uniform beam carrying any number of dis-

crete elements is the subject of this paper. The exact solution of the problem has 

been obtained by the application of the Green’s function method. The numerical 

examples have shown the effect of non-uniformity of the cantilever beam on the 

eigenfrequencies of the system. Moreover, the numerical investigations present the 

eigenfrequencies of the system as  functions of the location of one spring-mass 

element attached to the cantilever beam with variable cross-section area. Although 

the solution of the problem concerns the cantilever beam, the presented method 

can be used for boundary conditions corresponding to other beams. 
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Appendix 

The functions occuring in definition of the coefficients Ci (equation (21)) are 

given as follows: 

( ) ( ) ( ) ( )1 2 1 1 2
J K J K φ = −β β β + β β  , ( ) ( ) ( ) ( )2 2 1 1 2

K Y K Y φ = −β β β + β β  ,  

( ) ( ) ( ) ( )3 2 1 1 2
I J I J φ = β β β − β β  , ( ) ( ) ( ) ( )4 2 1 1 2

I Y I Y φ = β β β − β β   

( ) ( ) ( ) ( )4 4 1 4 3
a J I Kα = θ + θ φ + θ φ , ( ) ( ) ( ) ( )4 4 2 4 4

b Y I Kα = θ + θ φ + θ φ ,  

( ) ( ) ( ) ( )5 5 1 5 3
c J I Kα = θ − θ φ + θ φ , ( ) ( ) ( ) ( )5 5 2 5 4

d Y I Kα = θ − θ φ + θ φ ,  

( ) ( ) ( ) ( ) ( )w a d c bα = α α − α α , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 2 2 4 4 2 2 4
e , 2 I K I K J Y J Y   α η = θ σ − σ θ + π θ σ − σ θ    ,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )5 2 2 5 5 2 2 5
f , 2 I K I K J Y J Y   α η = θ σ + σ θ − π θ σ − σ θ   

 

 

where: θ =β α , σ = β η . 

 

 


