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Abstract. The standard boundary element method for Poisson equation requires the discre-
tization of boundary and interior of the domain considered. In this paper the variant called
dual reciprocity boundary element method is presented. On the stage of numerical computa-
tions this approach allows to avoid the discretization of the interior of domain. In the final
part of the paper the example of computations and comparison of results obtained using the
BEM and DRBEM are shown.

1. Governing equations

We consider the Poisson equation
(x,y) e Q: /1V2T(x,y) + Q(x,y) =0 )
where ﬂ[W/mK] is the thermal conductivity, 7 is the temperature, x, y are the

geometrical co-ordinates, Q(x, y) is the source function. The equation (1) is sup-
plemented by the boundary conditions:

(x,y) el : T(x,y) =T,
(x,y) el,: q(x,y) = —in-VT(x,y) =gq,

where 7, is known boundary temperature, n is the normal outward vector at the

)

boundary point (x, y) , g, 1s given boundary heat flux.

2. Boundary element method

The boundary integral equation for equation (1) is following [1, 2]:

(£n)eT: B(En)T(En) + [q(xy) T (&n.x,y)dl =

. \ (3)
IT(x,y)q (f,?],x,y)dr + J-J-Q(x,y)T (f,?],x,y)dQ
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where B(f,f]) is the coefficient connected with the local shape of the boundary,
T"(&.m,x,y) is the fundamental solution, (&,7) is the observation point, while

q*(é:anaxay) = —AH'VT*(Q:J?,X:J/) 4)
and
q(x,y) = —ln-VT(x,y) )

Fundamental solution has the following form

T (E73) = ——Int ©)

2 A r

where r is the distance between the points (§,77) and (x, y)

r:\/(x—§)2+(y—7])2 (7

Heat flux resulting from the fundamental solution can be calculated analytically

¢ (&m.x.9) = 5 (8)
where
d =(x-&)cosa + (y—n)cos 8 9
while cosa, cosf are the directional cosines of the boundary normal vector n.
3. Dual reciprocity boundary method
The solution of Poisson equation (1) can be written as a sum
T(x,y) = f"(x,y) + U(x,y) (10)
where the first function is the solution of Laplace’s equation
(x,y) e Q: AVT(x,y)=0 (11)

while U (x, y) is the particular solution

(n.y)eQ: AVU(x,y)=-0(x.y) (12)
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It is generally difficult to find a solution U (x, y), so in the dual reciprocity
method the following approximation for Q(x, y) is proposed [3]

N+L

O(x.y) = 2 a, fi (%) (13)

where a, are unknown coefficients and fk(x, y) are approximating functions

fulfilling the equations
—AVU, (xy) = fi (%) (14)

In equation (13) N+ L corresponds to the total number of nodes, where N is the

number of boundary nodes and L is the number of internal nodes.
Putting (14) into (13) one has

Q(x,y) =-A iak VzUk(x,y) (15)

We consider the last integral in equation (3)

D = HQ(x,y)T*(f,ﬂ,x,y) dQ =

N+L (16)
—Z a, I [/1 VU, (x,y)] T (f,n,x,y)dQ

Using the second Green formula one obtains

D = —Nif a, ﬂ [ﬁ. VZT*(f,U,x,y)} Uk(x,y)dQ -

var a7
Zak I[/i T*(Q‘,n,x,y)n-VUk (x,y) - AU, (x,y)n-VT*(Q‘,ry,x,y)] dr
or
D = i:ak [B(‘faﬂ) U, (‘fs’?) +
k=1 (18)
IT*(f,U,x,y) w, (x,y) dI' — .[Uk (x,y)q*(f,ﬂ,x,y) dF]
where

W, (x,y) ==An-VU,(x,y) (19)
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So, the equation (3) takes the following form

B(&n)T(&n) + [a(xy) T (&mx.y)dl =

N+L

IT(xy (§nxy)dl + 3 a [ B(En) U (&m) + (20)

J. (gaﬂaxay)Wk (x,y dr - J.q fﬁ»x’J’) Uk(x’y) dr]

r

In numerical realization of DRBEM the boundary is divided into N constant
boundary elements and L internal nodes are distinguished. The integral appearing
in equation (20) are substituted by the sum of integrals over the boundary elements
and then

N+L

%T, + ﬁG,j q, = EN:[?U T, + Zak£ U, + Z iﬁ,j UMJ (21)
J=1 Jj=1 j=1

or
al N N+L N v
ZG:] q, = ZHij Tj + Zak ZG,, W;k ZHU' U/'k (22)
J=1 Jj=1 k=1 = ~
where
= [17(£.m,.x,¥)dr, len 1 lyr o
F is'lis y 272_21 : V,-] J
and
* 1 d,
q flsﬂ,,x,y dIr = — | 4 dr L iE ]
H,‘] = IJ: ( ) J 272_ 7 r}i J (24)
-1/2, .y
We define
I"]i r]:;c
) 25
K49 (25)
where

rji = (xk - xj)2 + (yk - yj) (26)
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Using the formula (19) we obtain

where
d, = (xk - x‘])cosak + (yk - y‘])cos,Bk
Because
VU, =1+r,
so on the basis of equation (14) one has
fu=—A(1+71,)

The equation (13) can be expressed as follows

N+L

0, =-4ya/(l+r,) . s=12,..N+L
k=1

The system of equations (31) can be written in the matrix form

0, Ju Jis o Jiner a,
QZ _ f?l »}(22 »}(2N+L aZ
QN+L fN+L)1 fN+L,2 fN+L,N+L aN+L

27)

(28)

(29)

(30)

€1Y)

(32)

This system allows to calculate the coefficients a,, k =1,2,..., N+ L. The equa-

tions (22) can be also written in the matrix form
Gq=HT +(GW - HU)a

where

(33)

(34)
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Hll H12 HIN

H — 21 22 (35)

and
u, U, .. Uy,
U- v, U, U, v.s (36)
Uy, Uy, o Uy
while
Wi Wa o o Wiy,
W w, W, .. W,,., 37)
WNI WN 2 WN,N+L

After solving the system of equations (33), the temperatures and heat fluxes at
boundary nodes are known. Next, the temperatures at the internal nodes are calcu-
lated using the formula (c.f. equation (21))

N+L

N N N N
=S, S0, Saue S6,m - S, e
k=1 j=1 j=1

J=1 J=1

4. Example of computations

The square of dimensions 0.03x0.03 m has been considered. Thermal conduc-
tivity equals 4 = 1 W/(mK). On the left part of the boundary the Neumann condi-
tion ¢, = —10* W/m’ has been assumed, on the remaining parts of the boundary
the Dirichlet condition 7, = 100°C has been accepted. The boundary has been
divided into 20 constant boundary elements, 25 internal nodes are distinguished.
In order to compare the results obtained using DRBEM with the results obtained
by BEM, in the second case the interior has been divided into 25 constant internal
cells (Fig. 2).

The calculations have been done for three different source functions, this means:

l. Q(x,y) = 107(x2 +y2)
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2. Q(x,y) = 107(x3 +y3)
3. Q(x,y) =10"x" +5-10"y".
In the Table 1 the results of computations are shown.
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Fig. 1. Discretization and internal nodes (DRBEM)
o R
169 @ ° ° o e ¢10
17¢ o ° L[] ° e o9
18 @ ° ° . o ¢38
19¢ e6 o7 e8 9 0109 7
20¢ eI 02 e3 o4 5 96
S S S
Fig. 2. Discretization (BEM)
Table 1
Comparison of the BEM and DRBEM
Internal node Variant 1 Variant 2 Variant 3
BEM DRBEM BEM DRBEM BEM DRMEB
1 430 429 433 433 428 422
2 245 247 248 248 243 245
3 171 174 174 175 170 173
4 132 135 135 135 130 134
5 107 110 110 110 105 110
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