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Abstract. The properties of a simple fluid, or Ising magnet, confined in an L×∞ geometry, 
are studied by means of numerical density-matrix renormalization-group techniques. We 
have proposed and have verified a few criterions to determine the wetting transition phase 
boundary with different ranges of surface forces. 

Introduction 

Wetting phenomena are ubiquitous in nature [1-3]; the most familiar situation 
being a liquid-vapour system in a contact with a solid wall. Usually one considers 
a semi-infinite geometry with a solid planar wall that preferentially adsorbs one  
of the phases of a system in thermodynamic equilibrium. Below the bulk critical 
temperature Tc, the adsorbed phase either forms isolated droplets or a thick 
macroscopic layer. The first case, known as partial wetting, occurs for 
temperatures  
below the wetting temperature Tw, while the second case occurs for Tw ≤ T < Tc and 
it is referred to as complete wetting. Here, as a model system, the Ising model is 
considered in a two-dimensional (d = 2) geometry and both phases, a liquid one 
and a vapour one, correspond to two phases with opposite magnetization. The fact 
that a wall can favour one of the phases corresponds, in Ising language, to 
introducing a surface magnetic field h1. In the d = 2 semi-infinite Ising model the  
wetting temperature is known exactly [4] and decreases monotonically with the 
surface field h1. 

   For d = 2 Ising strips of a finite width L (with opposing surface fields  
h2 = −h1) a partial wetting is restricted to temperatures below the so-called 
interface delocalisation (ID) temperature Td(L). For the short-range boundary fields 
at fixed h1, when L grows to infinity Td(L) scales to the wetting temperature Tw as 
Td(L) − Tw ≈ L−1/βs, where βs is the exponent describing the divergence of the 
thickness of the wetting layer for a semi-infinite system [5, 6]. At fixed T there is 
an equivalent form h1

(d)(L) − h1
(w) ≈ L−1/βs, where (d) and (w) denote the values of 
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the surface magnetic field on the interface delocalisation line and the wetting 
transition line, respectively. 

A long-standing problem in wetting is the existence or non-existence of 
universality for d = 3 systems with marginal short-ranged interactions. Ising model 
simulations do not reproduce the non-universality predicted by interfacial models. 
For  
d = 2 the marginal interaction is long-ranged and again interfacial models predict 
non-universality [7]. We propose a study to investigate whether this non-universa-
lity is observed in a microscopic Ising system. In order to do it first we should be 
able to determine the wetting transition line for finite L with a high accuracy.  
The main goal of the paper is to propose and verify various criteria for doing this. 

1. Model 

In spite of the name, the density-matrix renormalization-group method 
(DMRG) has only some analogies with the traditional renormalization group being 
essentially a numerical, iterative basis, truncation method. It was proposed by 
White in 1992 as a new tool for the diagonalization of quantum chain spin  
Hamiltonians [8]. Later, it was adopted by Nishino for d = 2 classical systems  
at non-zero temperatures [9]. The DMRG method allows one to study much larger 
systems (up to L = 500 in this paper) than it is possible with standard exact 
diagonalization method (up to L = 40÷50 for Ising strips) and provides data with  
remarkable accuracy. In the application of the DMRG method for classical d = 2 
spin systems, symmetric transfer matrices are used. Comparisons with exact results 
for the case of vanishing bulk magnetic field and boundary fields acting only on 
spins in the surface layers, show that this technique gives very accurate results in  
a wide range of temperatures [10]. Recently the method has been also applied to an 
Ising film subject to long-range boundary fields [6, 11]. 

Our results refer to the d = 2 strip defined on the square lattice of the size M×L, 
M→∞. The lattice consists of L parallel columns at spacing a = 1, so that the width 
of the strip is La = L. We label successive columns by the index l. At each site, 
labeled (k,l), there is an Ising spin variable taking the value σkl = ±1. We assume 
nearest-neighbour interactions of strength J and Hamiltonian of the form 
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where h1 and Hl are in units of the coupling constant J. The first term in Eq. (1) is  
a sum over all nearest-neighbour pairs of sites, while in the next two terms h1 is the 
surface (short-ranged) magnetic field acting on all sites in the first and in the last 
column. The opposing signs of these terms guarantee the presence of an interface 
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below Tc, when L→∞. The value s
lL

s HHH −+−= 111  is the total long-ranged 
boundary magnetic field experienced by a spin in the columns 1 < l < L. The single 

long-ranged boundary field sH1  is assumed to have a form ps lwH /1 =  with p > 0. 

It is worth noticing that if the wetting is universal with respect to the range of the  
wall-fluid potential βs should be independent from w. 

2. Criterions of localization 

In order to determine a localization of the ID transition we have applied four 
criterions and then extrapolated results to infinity to recover the wetting transition 
line. Because we are interested in a low-temperature behaviour all calculations 
were performed at T = 1.5. In order to analyse the long-range case we perform our 
studies for p = 2, 3, 4. The p = 3 is a marginal case, where both energy and entropy 
of relevant degrees of freedom scale with L in the same way [2, 12-15]. There is no 
wetting transition for fields which drop off more slowly than 1/l3 so that in our 
studies of the force law with p = 2 we expect that the interface remains pinned to 
the wall at all finite temperature. For p > 3 the entropic contribution dominates and 
critical behaviour is the same as for the case of short-ranged forces characterising 
the so-called strong-fluctuation regime [2]. 

A. The straight profile criterion 

Our first criterion is based on a shape of the profile. It is known [16] that for the 
short-range case for infinite Ising strips with opposing boundary fields at the ID 
transition the interface meanders in such a way that the magnetization gradient is 
constant over the whole width L. Therefore the magnetization profile is charac-
terized by the scaling function of a linear form 
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We have adopted it for the long-range case. At fixed T, L, p, and w we changed 
h1 measuring the deviations of the profile from a straight line. The ID transition 
was at the value of h1, where the deviations were the smallest. 

B. The profile scaling criterion 

The second criterion is based on the scaling behaviour of a profile, which also 
occurs at the ID line [16]. In order to localize the ID transition Td(h1;L) at a certain 
temperature T, boundary field scans can be performed for lengths L and L+2.  
The profiles are compared according to the quantity 
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which measures a deviation from the bulk magnetization. To compare the data for 
L and L+2 we rescale l to value (l−1)/(L−1) which varies between 0 and 1. Then at 
the value of h1, where d(L) and d(L+2) cross each other as functions of h1, both 
profiles are the most similar. This optimal scaling corresponds to the ID transition. 
The procedure can be applied to the long-range case as well. 

C. The pseudo magnetic susceptibility criterion 

The singularity (or a maximum) of the magnetic susceptibility χ is one of  
the most popular criteria for localization of a phase transition (or a pseudophase 
directly from the fluctuations of the total magnetization and has been used 
extensively in Monte Carlo simulations [15]. This is less convenient for the 
DMRG method, where the free energy is calculated straightforwardly with very 
high accuracy. Therefore it is natural to use an alternative expression, known from 
thermodynamics [17], relating the magnetic susceptibility to the second derivative 
of the free energy f with respect to the bulk magnetic field h. In this case it is 
necessary to extend our Hamiltonian with a bulk field term acting on all spins in 
the same way. 

Nevertheless our case is a bit special, because we want to determine the 
transition line at zero bulk field, where in the partial wetting regime there is a first 
order transition region. For infinite system there is a coexistence of phases with  
opposing magnetizations. So, there is a discontinuity of the first derivative of  
the free energy (a jump of the magnetization m = −df/dh), when the bulk magnetic 
field changes sign. That is the reason why, in order to calculate χ (a reaction of  
a system to a change of the bulk magnetic field) here, one should calculate the 
derivatives for small nonzero bulk fields and then let h go to zero. In the complete 
wetting regime the most likely are the configurations, where an interface meanders 
freely between walls and where there is no discontinuity of the free energy 
derivatives, when the h = 0 plane is crossed. 

For numerical calculations (as for the DMRG method) the necessity of  
performing an extra limit (h→0 in this case) is troublesome. Therefore we decided 
to use another quantity χ0 instead of χ, which is also the second derivative of  
the free energy at fixed T and h1, but calculated in a symmetrical way with respect 
to the h = 0 plane (by means of the free energy values taken for five equidistance 
points: −2∆h, −∆h, 0, ∆h or 2∆h - we used ∆h = 10−5 typically). Because our 
calculations are always carried out for finite L, there is no longer a discontinuity of  
the magnetization in the partial wetting regime. They are replaced by rounded, but 
very steep, functions when the h = 0 plane is crossed. 
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In order to determine the ID transition we scan the phase diagram at fixed L, T, 
p, and w. The higher the temperature, the less steep are magnetizations and  
the values of their derivative χ0 are smaller. But, of course, at T = 1.5 the slope is 
very steep. At fixed L, the ID transition can be indicated by the maximal slope of 
the χ0 or the minimum of its derivative with respect to the surface field. Although 
all derivatives  have been performed in a numerical way, the accuracy of  
the DMRG method yielding very precise results. 

D. The central correlation criterion 

In this case we have localized Td(h1;L) using the correlation function between 
two neighbouring spins at the center of the strip 

 jLjLLc ,12/,2/2/ += σσ    (4) 

In the partial wetting regime where there is pseudo-phase coexistence cL/2 is 
large and positive since the two spins are preferably aligned. If an interface is  
present, cL/2 drops to smaller values, since in many configurations when the 
interface is located at the center of the strip the two spins tend to have opposite 
values. We identify Td(h1;L) as the maximum of the surface field derivative of cL/2 
at fixed T, L, p and w. 

3. Discussion 

The comparison of the wetting transition lines obtained using the above criteria 
is presented in Figure 1. The agreement is very good for negative w, where  
the fields (both short- and long-ranged) act in a similar way. 
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Fig. 1. The wetting transition lines for L = 60 

As one can see in Eq. (1) here both field terms of the hamiltonian are negative 
(positive) on the same side of a strip. Due to this both fields induce the same 
interface. For positive w on the other hand the situation is considerably more 
involved with all four fields in the surface forces inducing frustration. This results 
in  
a rather different transition line (and critical behaviour). Moreover for large,  
positive w the wetting transition disappears altogether. 

Figure 2 presents the extrapolated curves (L→∞) for different p. When p grows 
(the range of the w field is smaller with respect to the marginal case) the transition 
line become more flat. It means that the influence of the long-ranged field is 
smaller here. In the limit of the short-ranged field (p→∞) it would be a constant 
line at the value given by Abraham's curve [4]. When p goes down (the range of 
the w field is larger with respect to the marginal case) the transition line become 
more steep. It seems that contrary to the case with only one long-ranged field  
acting from the first to the last column (it would be then the following term in  

the hamiltonian: )
1∑ ∑=

L

l k kllH σ  there is a narrow window where the wetting 

transition occurs also below p = 3. 
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Fig. 2. The wetting transition lines at various p for the limit L→∞. Here, and in the following 

figures, results based on the central correlation criterion are presented 

As far as the problem of scaling of the transition lines is considered there are 
always two regimes. It is shown in Figure 3 for p = 3, where the L→∞ curve is  
the bottom (upper) limit on the left (right) to a certain value of w. This crossover 
value wcrossover can be found in the L→∞ limit, as it is presented in Figure 4. It is 
worth stressing that when p grows wcrossover goes to more negative values of w, 
whereas when p goes down the position of wcrossover moves towards zero. 

The problem of universality of the wetting with respect to the range of the wall-
fluid potential will be studied elsewhere. 
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Fig. 3. The wetting transition lines for various L at p = 3 

 
Fig. 4. The scaling of the crossover point at p = 3 

This work was partially funded by the grant of the Ministry of Science and Higher 
Education No 1 P03B 061 30. 

References 

[1] Dietrich S., (in:) Phase Transitions and Critical Phenomena, ed. C. Domb and J.L. Lebowitz, 
Academic, London 1988, 12, 1. 



Localization of the wetting transition for finite systems with a long-range wall-fluid potential 23

[2] Schick M., (in:) Liquids at interfaces, Proceedings of the Les Houches Summer School, Session 
XLVIII, ed. J. Charvolin, J.F. Joanny and J. Zinn-Justin, North-Holland, Amsterdam 1990, 415; 
G. Forgacs, R. Lipowsky, Th.M. Nieuwenhuizen, (in:) Phase Transitions and Critical Pheno-
mena, ed. C. Domb and J.L. Lebowitz, Academic, London 1991, 14, 135. 

[3] Sullivan D.E., M.M. Telo de Gama, (in:) Fluid Interfacial Phenomena, ed. C.A. Croxton, Willey, 
New York 1986, 45. 

[4] Abraham D.B., Phys. Rev. Lett. 1980, 44, 1165. 

[5] Parry A.O., Evans R., Phys. Rev. Lett. 1990, 64, 439. 

[6] Drzewiński A., Szota K., Phys. Rev. E 2005, 71, 056110. 

[7] Lipowsky R., Nieuwenhuizen Th.M., J. Phys. A: Math. Gen. 1988, 21, L89. 

[8] White S.R., Phys. Rev. Lett. 1992, 69, 2863; S.R. White, Phys. Rev. 1993, B 48, 10345. 

[9] Nishino T., J. Phys. Soc. Japan 1995, 64, 3598. 

[10] Maciołek A., Ciach A., Drzewiński A., Phys. Rev. 1999, E 60, 2887. 

[11] Maciołek A., Drzewiński A., Bryk P., J. Chem. Phys. 2004, 120, 1921. 

[12] Kroll D.M., Lipowsky R., Phys. Rev. 1983, B 28, 5273. 

[13] Lipowsky R., Phys. Rev. Lett. 1984, 52, 1429. 

[14] Fisher D.S., Huse D.A., Phys. Rev. 1985, B 32, 247. 

[15] Albano E.V., Binder K., Paul W., J. Phys.: Condens. Matter 2000, 12, 2701. 

[16] Parry A.O., Evans R., Nicolaides D.B., Phys. Rev. Lett. 1991, 67, 2978. 

[17] Yeomans J.M., (in:) Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford 1992. 

 


