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Abstract. The properties of a simple fluid, or Ising magreemfined in an koo geometry,
are studied by means of numerical density-matrhommalization-group techniques. We
have proposed and have verified a few criteriondeitermine the wetting transition phase
boundary with different ranges of surface forces.

Introduction

Wetting phenomena are ubiquitous in nature [143&; most familiar situation
being a liquid-vapour system in a contact with Bdseall. Usually one considers
a semi-infinite geometry with a solid planar wdiht preferentially adsorbs one
of the phases of a system in thermodynamic equililor Below the bulk critical
temperatureT,., the adsorbed phase either forms isolated dromets thick
macroscopic layer. The first case, known as partadtting, occurs for
temperatures
below the wetting temperatufg, while the second case occurs T T < T, and
it is referred to as complete wetting. Here, asaaeh system, the Ising model is
considered in a two-dimensiona € 2) geometry and both phases, a liquid one
and a vapour one, correspond to two phases withsifgpmagnetization. The fact
that a wall can favour one of the phases correspomd Ising language, to
introducing a surface magnetic fighgl In thed = 2 semi-infinite Ising model the
wetting temperature is known exactly [4] and desesamonotonically with the
surface fieldh;.

Ford = 2 Ising strips of a finite widthiL (with opposing surface fields
h, = —h;) a partial wetting is restricted to temperaturedolw the so-called
interface delocalisation (ID) temperaturgl). For the short-range boundary fields
at fixed h;, whenL grows to infinity T4(L) scales to the wetting temperattigas
ToL) — Tw = L™ wheref, is the exponent describing the divergence of the
thickness of the wetting layer for a semi-infinggstem [5, 6]. At fixedr there is
an equivalent fornn,¥(L) - h," = L™% where @) and (v) denote the values of
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the surface magnetic field on the interface deieatibn line and the wetting
transition line, respectively.

A long-standing problem in wetting is the existenoe non-existence of
universality ford = 3 systems with marginal short-ranged interactitging model
simulations do not reproduce the non-universalisdicted by interfacial models.
For
d = 2 the marginal interaction is long-ranged andragaerfacial models predict
non-universality [7]. We propose a study to invgsté whether this non-universa-
lity is observed in a microscopic Ising systemotder to do it first we should be
able to determine the wetting transition line farite L with a high accuracy.
The main goal of the paper is to propose and vedfjous criteria for doing this.

1. Mode

In spite of the name, the density-matrix renornaian-group method
(DMRG) has only some analogies with the traditiaralormalization group being
essentially a numerical, iterative basis, truncatinethod. It was proposed by
White in 1992 as a new tool for the diagonalizatimin quantum chain spin
Hamiltonians [8]. Later, it was adopted by Nishiftw d = 2 classical systems
at non-zero temperatures [9]. The DMRG method alowe to study much larger
systems (up td. = 500 in this paper) than it is possible with stawdexact
diagonalization method (up to= 40+50 for Ising strips) and provides data with
remarkable accuracy. In the application of the DMR&thod for classicad = 2
spin systems, symmetric transfer matrices are WSechparisons with exact results
for the case of vanishing bulk magnetic field amadidary fields acting only on
spins in the surface layers, show that this teamigjves very accurate results in
a wide range of temperatures [10]. Recently théhowehas been also applied to an
Ising film subject to long-range boundary fields 18].

Our results refer to theé= 2 strip defined on the square lattice of the 8iz¢.,
M - 0. The lattice consists &f parallel columns at spacimg= 1, so that the width
of the strip isLa = L. We label successive columns by the intleAt each site,
labeled k), there is an Ising spin variable taking the vatge= £1. We assume
nearest-neighbour interactions of strengjind Hamiltonian of the form

H =—J{ ZO’HU-k-r_hLZJM +h_|_za-kL+Z_leo—kl} (1)

<kl ,k'l'> k

whereh; andH, are in units of the coupling constahtThe first term in Eq. (1) is
a sum over all nearest-neighbour pairs of sitedevin the next two termhb; is the
surface (short-ranged) magnetic field acting orsadls in the first and in the last
column. The opposing signs of these terms guardghte@resence of an interface
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below T,, when L. The value H; =H’-H},,, is the total long-ranged
boundary magnetic field experienced by a spin enablumns 1 ¢ < L. The single
long-ranged boundary fielti; is assumed to have a forhh’ =w/I P with p > 0.

It is worth noticing that if the wetting is univaiswith respect to the range of the
wall-fluid potential 5 should be independent from

2. Criterions of localization

In order to determine a localization of the ID s#ion we have applied four
criterions and then extrapolated results to infini recover the wetting transition
line. Because we are interested in a low-tempezab@haviour all calculations
were performed af = 1.5. In order to analyse the long-range case aviopn our
studies fomp = 2, 3, 4. The = 3 is a marginal case, where both energy and gntro
of relevant degrees of freedom scale witim the same way [2, 12-15]. There is no
wetting transition for fields which drop off moréowly than 1I° so that in our
studies of the force law with = 2 we expect that the interface remains pinned to
the wall at all finite temperature. Fpr> 3 the entropic contribution dominates and
critical behaviour is the same as for the casehoftsanged forces characterising
the so-called strong-fluctuation regime [2].

A. Thestraight profile criterion

Our first criterion is based on a shape of theif@olt is known [16] that for the
short-range case for infinite Ising strips with opmg boundary fields at the ID
transition the interface meanders in such a walttieamagnetization gradient is
constant over the whole width Therefore the magnetization profile is charac-
terized by the scaling function of a linear form

2l
m(l) = mo(l—Tj (2)
We have adopted it for the long-range case. Atdfikel, p, andw we changed
h; measuring the deviations of the profile from aigfint line. The ID transition
was at the value df;, where the deviations were the smallest.

B. The profile scaling criterion

The second criterion is based on the scaling behbawf a profile, which also
occurs at the ID line [16]. In order to localizetlb transitionTy(hy;L) at a certain
temperatureT, boundary field scans can be performed for lendgthend L+2.
The profiles are compared according to the quantity
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2 1/2
_| 15[ m)
d(l)—[Lz[mD” 3)

=1

which measures a deviation from the bulk magnétinaffo compare the data for
L andL+2 we rescalé to value [-1)/(L-1) which varies between 0 and 1. Then at
the value ofth;, whered(L) andd(L+2) cross each other as functionshgf both
profiles are the most similar. This optimal scalewgresponds to the ID transition.
The procedure can be applied to the long-range assell.

C. The pseudo magnetic susceptibility criterion

The singularity (or a maximum) of the magnetic syibility y is one of
the most popular criteria for localization of a padaransition (or a pseudophase
directly from the fluctuations of the total magazetion and has been used
extensively in Monte Carlo simulations [15]. This ess convenient for the
DMRG method, where the free energy is calculatedigitforwardly with very
high accuracy. Therefore it is natural to use a&erahtive expression, known from
thermodynamics [17], relating the magnetic susbdjtyi to the second derivative
of the free energy with respect to the bulk magnetic fiehd In this case it is
necessary to extend our Hamiltonian with a bulkdfierm acting on all spins in
the same way.

Nevertheless our case is a bit special, becausevardg to determine the
transition line at zero bulk field, where in thefpa wetting regime there is a first
order transition region. For infinite system thé&ea coexistence of phases with
opposing magnetizations. So, there is a disconginoi the first derivative of
the free energy (a jump of the magnetizatior —df/dh), when the bulk magnetic
field changes sign. That is the reason why, in otdecalculatey (a reaction of
a system to a change of the bulk magnetic fieldehene should calculate the
derivatives for small nonzero bulk fields and theth go to zero. In the complete
wetting regime the most likely are the configuraipwhere an interface meanders
freely between walls and where there is no disoaityy of the free energy
derivatives, when thie = 0 plane is crossed.

For numerical calculations (as for the DMRG methdldg necessity of
performing an extra limith(- O in this case) is troublesome. Therefore we decided
to use another quantity, instead ofy, which is also the second derivative of
the free energy at fixe@l andh;, but calculated in a symmetrical way with respect
to theh = 0 plane (by means of the free energy values téiefive equidistance
points: —24h, -4h, 0, 4h or 24h - we usedsh = 10° typically). Because our
calculations are always carried out for finitethere is no longer a discontinuity of
the magnetization in the partial wetting regimeey'fare replaced by rounded, but
very steep, functions when the= 0 plane is crossed.
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In order to determine the ID transition we scanfhase diagram at fixdd T,
p, andw. The higher the temperature, the less steep agnetiaations and
the values of their derivativg, are smaller. But, of course, &t= 1.5 the slope is
very steep. At fixed., the ID transition can be indicated by the maxisiape of
the xo or the minimum of its derivative with respect e tsurface field. Although
all derivatives have been performed in a numerizaly, the accuracy of
the DMRG method yielding very precise results.

D. The central correlation criterion

In this case we have localizd¢(h;;L) using the correlation function between
two neighbouring spins at the center of the strip

CLio :<UL/2,jUL/2+1,j> (4)

In the partial wetting regime where there is pseplkase coexistenog, is
large and positive since the two spins are prefgraligned. If an interface is
present,c., drops to smaller values, since in many configoreti when the
interface is located at the center of the striptthe spins tend to have opposite
values. We identifyT4(h;;L) as the maximum of the surface field derivative,of
at fixedT, L, p andw.

3. Discussion
The comparison of the wetting transition lines ated using the above criteria

is presented in Figure 1. The agreement is verydgmo negativew, where
the fields (both short- and long-ranged) act imailar way.
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Fig. 1. The wetting transition lines far= 60

As one can see in Eqg. (1) here both field termthefhamiltonian are negative
(positive) on the same side of a strip. Due to thosh fields induce the same
interface. For positivav on the other hand the situation is considerablyemo
involved with all four fields in the surface forceslucing frustration. This results
in
a rather different transition line (and critical Hawiour). Moreover for large,
positivew the wetting transition disappears altogether.

Figure 2 presents the extrapolated curtes ) for differentp. Whenp grows
(the range of thev field is smaller with respect to the marginal Jabe transition
line become more flat. It means that the influenéehe long-ranged field is
smaller here. In the limit of the short-rangeddigb - o) it would be a constant
line at the value given by Abraham's curve [4]. Wipegoes down (the range of
thew field is larger with respect to the marginal case transition line become
more steep. It seems that contrary to the case avith one long-ranged field
acting from the first to the last column (it woub@ then the following term in

the hamiltonian:ZIL:llekakl) there is a narrow window where the wetting
transition occurs also below= 3.
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Fig. 2. The wetting transition lines at variqur the limitL - . Here, and in the following
figures, results based on the central correlatidarton are presented

As far as the problem of scaling of the transitiores is considered there are
always two regimes. It is shown in Figure 3 for 3, where thd - « curve is
the bottom (upper) limit on the left (right) to artain value ofw. This crossover
value WessoverCan be found in the - oo limit, as it is presented in Figure 4. It is
worth stressing that whep grows Wiessover JO€S to more negative values \of
whereas whep goes down the position of\.sevednoves towards zero.

The problem of universality of the wetting with pest to the range of the wall-
fluid potential will be studied elsewhere.
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