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Abstract. We propose to utility the methodology consist in estimation of concessions for 

compromise (called here the losses of magnitude). This is practically valuation (estimation) 

in what degree the got solution for remaining criterions or weight components will correct 

the suitable value of characteristic for concrete criterion. The additional aspect of multicri-

teria optimization in nets is the problem of adaptation the methodology, and at the same 

time the algorithm of estimating losses of magnitude to specific and type of criteria configu-

ration. 

Introduction 

Finding the optimal solution with point of view all criterions is complex question 

especially for situations of different trends (directed in different sides) of influence 

on arguments of criteria function [1-4]. The final stage of multicriteria optimization 

is finding the compromise. It is neuralgic phase because it seldom happens to find 

one the predominant solution for group of criterions according to net structure [5, 6]. 

Similarly as in case of risk we can on many ways define a compromise in depen- 

dence on studied situation [3, 7-9]. If all criterions achieve optimum values for con- 

crete set of parameters the value of compromise is equal zero because compromise 

is unnecessary. Also if all from players don't are satisfied of their payments the value 

of compromise is also on level zero. In situation when one of players is satisfied, 

and other not, we can accept that the value of compromise is also even zero [10-12]. 

Expression ”I agree on this condition but I would prefer those” there is the equiva-

lent of partial satisfying [13]. 

1.  The location of compromise in multicriteria net optimization  

For location of compromise in multicriteria optimization we use different algo-

rithms [3], which cannot always effectively apply to network models. One of the 

prime ways (with some defects about which we say somewhat later) is the algo-

rithm using so called the loss of optimum what we can name differently the size of 

concession for compromise. The idea of such algorithm consist in balance in refer-
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ence the size of concessions to every aim of optimization is (criterion). The size of 

these concessions we estimate in following way: 
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where: 

Ui - the concession treating to i-th aim (criterion) for benefits of remaining (the 

loss of value of optimum characteristic solution in relation to i-th criterion 

for reinforcement solutions characteristic of remaining criteria), 

Chi ( ) - characteristic treating to i-th criterion, 

Wi - weights of elements (nodes or connections) in optimal solution regard i-th 

criterion, 

Si - estimation of optimum solution structure regard i-th criterion, 

n_k - the number of criterions. 

To assure the comparability of criteria characteristics we can use with version 

standardized: 

 Ui = ),(/),(),(
_

1

iiijiii

kn

ij
j

ii SWChSWChSWCh −∑
≠
=

 (2) 

Among remembered aims (criterions) of optimization in nets and connected with 

characteristics we can distinguish next profiles: 

– critical path, 

– shortest path, 

– minimal spanning tree, 

– maximal flow, 

– minimal cost flow, 

– cardinality matching, 

– Hamilton road, 

– optimal task scheduling. 

 

Usually we present network structures with help of graph or matrix: 

 
 w1,1   w1,2   ...  w1,n 

 w2,1   w2,2    ...    w2,n 

 ............................... (3) 

 wn,1     wn,2   ...   wn,n 

 
Matrices imitate on example the character of connections and treating them weight 

values. Introduced in Figure 1 net structure can be described as matrix (Table 1). 
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Fig. 1. Example of network structure  

Table 1. Net (fig. 1) connections and value of their capacity (the weight)  

 1 2 3 4 5 6 7 8 9 10 sum_w 

1  6 4 5       15 

2     7      7 

3     6      6 

4      3     3 

5       9   4 13 

6        6 4  10 

7          6 6 

8       7    7 

9          5 5 

10           0 

sum_col 0 6 4 5 13 3 16 6 4 15  

min_w_c  6 4 3 13 3 6 6 4   

 

Preliminary and auxiliary parameters which will used to calculation net maximum 

capacity are showed in Table 1. The sums in individual rows which reflect the 

level of maximum size floating media in given node are placed in the last column. 

Obviously the quantity of medias floating in node (sum_w(i)) is equal quantity of 

floating out (sum_col(i)). The capacity of node will be equal: 

 min_w_k(i) = min{sum_w(i),sum_col(i)} (4) 

2. Compromise with taking into account different 

weight compositions 

The defining the losses value of optimization formula in such case will subject 

to modification: 
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Taking into account introduced conditions we can, with help of Solver, find maxi-

mum flow through given net i.e. from start point 1 to target point 10 (Fig. 1). The 

results of optimization is showed in Table 2. 

Table 2. Maximal flow in net from Figure 1 

 6 4 3       13 

    6      6 

    4      4 

     3     3 

      6   4 10 

       0 3  3 

         6 6 

      0    0 

         3 3 

          0 

0 6 4 3 10 3 6 0 3 13 max_p 

 
Increasing flow capacity of connection between nodes 4 and 6 (W4,6) from 3 to 8 

(Fig. 1) we lead to enlargement the maximum flow from 13 to15 (Tables 2 and 3). 

Table 3. The results of optimization on the base of maximum flow algorithm in net from 

Figure 1 after increment the capacity W4,6 from 3 to 8 

 6 4 5       15 

    6      6 

    4      4 

     5     5 

      5   5 10 

       1 4  5 

         6 6 

      1    1 

         4 4 

          0 

0 6 4 5 10 5 6 1 4 15 max_p 

 
The next correction of weights in our example consist in decrease in connection 4-6  

weight to zero. Introduced in board 4. solution is an effect of this analyze. Assum-

ing the invariability of structures (S = const), despite of appearing zero values in 

connections in optimal  solutions) we obtain values of main characteristic: 
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Ch(W4,6 = 3, S = const) = 13, 

Ch(W4,6 = 8, S = const) = 15, 

Ch(W4,6 = 0, S = const) = 10 

Table 4. The results of net optimization (from Fig. 1) relating to maximum flow after 

decreasing the capacity W4,6 from 3 to 0 

 6 4 0       10 

    6      6 

    4      4 

     0     0 

      6   4 10 

       0 0  0 

         6 6 

      0    0 

         0 0 

          0 

0 6 4 0 10 0 6 0 0 10 max_p 

 
Applying methodology leaning on (5) we receive the value of loss for individual 

weight sets: 

 

U(1) = 13-15/13 +13-10/13 = 0,385 

U(2) = 15-13/15 +15-10/15 = 0,467 

U(3) =
 10-13/10 +10-15/10 = 0,800 

 

Minimization of variance leads to conclusions relating the corrections of value of 

function loss (Table 5, Figure 2): 

Table 5. The correction of value of loss (concessions on compromise) 

Variance U(i) correct_u average variance 

1 0,385 0,165667 0,550667 

 0 2 0,467 0,083667 0,550667 

3 0,8 –0,24933 0,550667 

 
If we find place in sense of flows levels where the average of value of function loss 

is equal 0,5506. (Table 5) and the variance of corrections of flow is minimal (on 

example with help of Solver), it will be situated according with placed in Table 6 

description. 

How to see, in such approach it does not guarantee unambiguous localization of 

compromise. 
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Assuming deterministic valuation of compromise e.g. one level of its value, we 

obtain the solution responding the minimum value of flow corrections variance 

(Table 7). 
 

Fig. 2. Scale of corrections of value function loss 

Table 6. The correction of flows for found compromise (in interval variant) 

after_corr max1 after_corr max2 after_corr max3 after_corr U1 after_corr U2 after_corr U3 average loss 

12,9949 14,9949 9,9949 0,3848 0,4668 0,8004 0,5507 

befor_corr max1 befor_corr max2 befor_corr max3         

13,000 15,000 10,000         

corr max1 corr max2 corr max3       variance corr 

0,0051 0,0051 0,0051       0,0000 

Table 7. The correction of flows for compromise (in deterministic variant) 

after_corr max1 after_corr max2 after_corr max3 after_corr U1 after_corr U2 after_corr U3 average loss 

12,0000 12,0000 12,0000 0,0000 0,0000 0,0000 0,0000 

befor_corr max1 befor_corr max2 befor_corr max3     

13,000 15,000 10,000     

corr max1 corr max2 corr max3    variance corr 

1,0000 3,0000 2,0000    1,0000 

 
More simply method consist in find the parameters of maximum flow and answer-

ing them the weights. 

Chosen the parameter of maximum flow can be calculated by methods of the smal-

lest squares, eigenvectors or expected values [6]. 

If from among proposed sets of weights we found the average the value of maximum 

flow, that for such chosen parameters we can fit the optimum values of weights. In 

our example the average of flows is equal 12,67. We match weights with help of 
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Solver. So we define values of criteria as averages of flow value, such in Table 8 

(in aim cell of Solver program): 

Table 8. Result of searching weights for chosen set (conciliatory variant) flow:12,67 

 5,55 3,55 3,55       12,66 

    5,55      5,55 

    3,55      3,55 

     3,55     3,55 

      6   3,11 9,11 

       0 3,55  3,55 

         6 6 

      0    0 

         3,55 3,55 

          0 

0 5,55 3,55 3,55 9,11 3,55 6 0 3,55 12,7 max_p 

 
For the compromise responding flow level 12,00 (Table 7) we receive the follow-

ing weights (Table 9). 

Table 9. Searching of weights for set compromise flow: 12,0 

 5,22 3,55 3,22       12 

    5,22      5,22 

    3,55      3,55 

     3,22     3,22 

      6   2,78 8,78 

       0 3,22  3,22 

         6 6 

      0    0 

         3,22 3,22 

          0 

0 5,22 3,55 3,22 8,78 3,22 6 0 3,22 12 max_p 

 
We would emphasize, that different weight sets (responded flow capacities) guar-

antee the same level of flow, e.g. - Table 10. 

So we can introduce the additional criteria of weights configuration relating, on 

example, to criterion of capacity unification (which would answer the equal dia- 

meters of pipes transporting gas or liquid media). 
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Table 10. Invariantly weight set guaranteeing flow level 12,0 

 5,33 3,33 3,33       12 

    5,33      5,33 

    3,33      3,33 

     3,33     3,33 

      6   2,67 8,67 

       0 3,33  3,33 

         6 6 

      0    0 

         3,33 3,33 

          0 

0 5,33 3,33 3,33 8,67 3,33 6 0 3,33 12 max_p 

3. Compromise for different compositions of criteria 

The inclusion next criterions is difficult and complex question and require pro-

cedural (algorithmic) adjustment of finding optimum methods assuring flow on level 

12,0. For example the connection of criterions of the largest flow and the shortest 

path seems algorithmically independent, and in majority cases one treats it in such 

way. However if we identify (or only connect) length of path with costs, and flow 

with capacity of flow, which influences also on costs, then the matter a little com-

plicates and requires additional analysis. 

If to deal out costs component connected with capacity and on this basis find 

the cheapest connection (Fig. 1) we obtain solution introduced with help of Table 

11 and Figure 3. 

Table 11. The shortest path from point 1 to point 10 (Fig. 1):1-3-5-10 

   węzeł 2 3 4 5 6 7 8 9 10 

1    6 4 5 * * * * * * 

2   6 * * * 13 * * * * * 

3   4 * * * 10 * * * * * 

4   5 * * * * 8 * * * * 

5   10 * * * * * 19 * * 14 

6   8 * * * * * * 14 12 * 

7   19 * * * * * * * * 25 

8   14 * * * * * 21 * * * 

9   12 * * * * * * * * 17 

             

   min 6 4 5 10 8 19 14 12 14 
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Fig. 3. The shortest road in net from weights from table 1 

The length of critical path is named Ch2(W2,S2) and equals 4+ 6 + 4 = 14. Apply- 

ing methodology (5) we count the scale of loss of values U1,U2 for both criterions. 

 

U1 =13 -13 /13 = 0 

U2 =14 - 12/14 = 0,143 

 

If for any criterion the function of loss will be equal zero that means the result-

ing from regard of remaining criterions changes do not influence on optimum solu-

tion according with given criterion. In our case it concerns the criterion of maxi- 

mum flow U1 = 0. Defining firstly the length of the shortest path we can examine 

if the structure of remaining structure may protect (guarantee) the invariability of 

flow level. In our example aiming to decrease of loss value (U2 → 0) we admit that 

without damage for level of flow we can reduce weight connection 3-5 from 6 to 4 

and at the some time it corrects shortest path from 14 to 12. In this case the loss 

value will be equal: 

 

U2 =12-12/12 = 0 

 

The composition of criterions:  minimum  spanning tree as well as maximum flow 

is much closer to concrete real situations. The minimum spanning tree shape descri- 

bed with help of analysis provided in Table10 is presented in Figure 4. 

 
 2 7 
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 3 5 8 10 
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Fig. 4. The minimum spanning tree structure (shape) on base of net from Figure 1 

For spanning tree from Figure 4 we present weight table (Table 12) as well as 

we count on example with help of Solver maximum flow. 
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Table 12. The estimations of characteristic Ch1(W2,S2)= 4 

 0 4 0       4,00 

          0,00 

    4      4,00 

     0     0,00 

      0   4 4,00 

       0 0  0,00 

          0,00 

          0,00 

          0,00 

          0,00 

0 0 4 0 4 0 0 0 0 4 max_p 

 
Different way of generalization of formula (2) is simultaneous regarding both the 

changeability of weights and the changeability of structure of solution: 
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Let's present the remaining components values of loss value (2) yet: 

 

Ch1(W1,S1) = 13 

Ch1(W2,S2) = 4 

Ch2(W2,S2) = (6+4+5+6+3+9+6+4+4) = 47 

Ch2(W1,S1) = (6+4+3+4+3+6+0+3+4) = 33 

 

The suitable levels of loss value will equal: 

 

U1 = 13 – 4/13 = 0,692 

U2 = 47 – 33/47 = 0,085 

 

Joining to spanning tree set of connections 2-5, 7-10, 9-10 gives protection of  maxi- 

mum flow max_p = 13. Connection 6-8 wouldn't transport medium. The levels of 

loss value will be counted as follows: 

 

U1 = 13 – 13/13 = 0,0 

U2 = 47 – 33/47 = 0,085 

 

The variance of loss values U1 and U2 strong decreases what indicates on closeness 

of compromise. 
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Conclusions 

1. Adopting methodology leaning on estimation loss value of (concessions on 

compromise working out)  we solve among other the problem of choice between 

functions (2), (5) and (6). The analysis will consist in decision if task of multi- 

criteria optimization will be based on change weights or structure or both of 

them. 

2. Utilization methodology on calculation loss values can lead both to determinis-

tic solutions and uncertain (on example interval's; Table 6). 

3. Different task connected with searching of compromise in optimization in nets 

is problem of investigation, here called, network structure sensibility, what would 

help in finding compromise (in aspect of rate of convergence). This problem 

has not been developed in presented material. 

4. Drawback of method studying the level of loss value is possibility of obtainment 

of compromise, which it will be ”the lost” in reference to all of majority crite-

rions. We can remove it considerably preferring the minimization of lose values 

over minimization variances of these losses. 
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