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Abstract. Electromagnetic field induced by two external #ledes and temperature field
resulting from electrodes action in 3D domain daflbgical tissue is considered. External
electric field causes the heat generation in tisimeain. The distribution of electric potential
in domain considered is described by the Laplacatén, while the temperature field is de-
scribed by the Pennes equation. These problemsoaged by source function being the
additional component in Pennes equation and regultiom the electric field action.
The boundary element method is applied to solvectheled problem connected with the
biological tissue heating. In the final part of thaper the examples of computations are
shown.

1. Governing equations

In Figure 1 a typical radio frequency (RF) hyperthia system is shown [1].
The mathematical model of the process analyzedistsnsf two parts [1-3]. The
electric part concerns the Laplace equation toiohtee electric field distribution.
The thermal part is connected with the bioheatsfieanequation to obtain the tem-
perature distribution. In the bioheat transfer ¢igmathe additional source term
associated with the heat generation caused byriel&etd distribution appears.

The potential inside the tissue is described by t#ydace equation

(x y,2)@ : 0 [e(x y, z)Op(x y,2)]=0 (1)

wheres(x, y, 2) [C?/(Nm?)] is the dielectric permittivity of tissue.
On the external surface of tissue being in a cantéh the electrodes the follow-
ing condition is given

(xy,z)T ,: o(x vy, zF U

(xy,z)T ,: o(x y,zF-U @

whereU [V] is the electric potential of the electrodeatale to the ground.
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On the remaining external boundary of the tisseeideal electric isolation is as-
sumed:
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Fig. 1. Action of electric field on biological tiss
The electric field inside the tissue is describgafuation
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E(x y,2)=-0p(x y, zF - (4)

Heat generatio® [W/m®] due to the electromagnetic dissipated powersn ti
sue depends on the conductiwtyS/m] and the electric field& [2]

Q. v, 2) :"|E(X’—2y’z)|2

o oy ] "
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The temperature field in the domain consideredeascdbed by the Pennes
equation [1, 4, 5]

(% y,2)@ : BT(X Y, 3 GuG[Ta~T(X ¥,2)]+Qu +Q (X, y,2) =0 (6)

whereT denotes the temperatue]W/(mK)] is the thermal conductivityzg [1/s]
is the perfusion rates [J/(nTK)] is the volumetric specific heat of bloot is the
supplying arterial blood temperature which is teglads a constar®, is the met-
abolic heat source.

At the {x, y} and {x, Z} surfaces (skin surface - c.f. Figure 1) of tisslgamain

the convection condition is assume(x, y, z)=a[T(x, y,2)-T,], wherea,

[W/(m?K)] is the heat transfer coefficient between thi slurface and the cooling
water, T, is the cooling water temperature. On the remaisungaces of tissue the
adiabatic condition can be taken into accoahdT (X, y, zZ)/on= 0.

2. Boundary element method - electric field

The boundary integral equation corresponding todteation (1) can be ex-
pressed as [6-8]

B(él’ &, és)@(&li & ‘23) +H\|’(X1 Y, Z)(P* (F: 2»§283 XY, Z) dr=

) @)
[[olx y. 2w (& &0 %, v, 2) O

where 1, &, &3) is the observation point, the coefficidB(€, &», &3) is dependent
on the location of source poirfi(&2, &), y(X,y, z) = -edp(x,y, )/ on.
Fundamental solution of the problem discussed lmasailowing form

¢ (&1’ €2 8 X0 Y, Z) = (8)

4mer

wherer is the distance between poinf§,, &,, &;) and(x, y, z). Differentiating
the function ¢ (&, &, &, X, y,z) with respect to the outward normal
n=[cosa, cos, cog] the functiony” (&, &,, &;, X, y, Z) is obtained

0 (&8, 5% Y,2) _ d

= 9
on 4qr3 ©

\V* (&17 En € XY, Z) =—g

where
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d=(x-¢,)cosu +(y —&,)cosp +(z —&;,) cosy (10)

The boundary of the domain is divided iMidooundary elements. For constant
boundary elements it is assumed that

Jo(x y.2)=0(x v, 2) =0,
(x,y,2)@T | {\V(X, V. 2)= (% v, 2) =y, (11)

and then one obtains the following approximatior@dation (7)

ieuwjziH”@j, i=1,2,...N (12)
where
G, Z.U(p* (8485080 X, Y, Z) M, (13)
and (fori #j) |
H, =!I\v* (85,85, Ea. Xy, 2)dr, (14)
while H, :—EN;H”, i=1,2 N.
=

j#i

The system of equations (12) can be written imtlagrix form
Gy =Heg (15)

This system allows to determine the 'missing’ bampdralues of functions
¢, v;. Next, the values of functiop at the internal point§&,;, &,, &) can be

determined using the formula
N N

¢, =Y Hio, => Gy, = i =N +LN +2,..N +L (16)
j=1 j=1

It should be pointed out that in order to deterntime electric field inside tis-
sue (equation (5)) the partial derivativé®, (X, y, z)/0x, ¢, (X, vy, z)/dy,

09 (X, v, z)/0z must be known. One of the possibilities is theliaption of
equation (7) for internal nodds,, &,, &,) (B(&,, &, &) =1) and then



Numerical modelling of tissue heating by meansefélectromagnetic field 93

00(&, oy’ 10 621 G3s X Y,
‘P(gzl”):jrjcp(x, y, 2)= c éaé % Y.2) g

a9’ (&, 20 63 X Y,
[Jw(xy.2) 0 (& F’a;’ x¥.7) dr

17)

épéz’ J‘J‘ X, Y, Z él’éZ’é@X Y, Z) dar -

05,

H\v(x, Y, z) (él’ %;3’ x¥.2) dar

(18)

and

épéz’ J‘J‘ X, Y, Z él’éZ’é@X Y, Z) dar -

0Cs

H\v(x, Y, z) (él’ %;3’ x¥.2) dar

(19)

where

(20)

and

oy _ 1[3(y-¢&,)d _cosﬁ} 21)

05, 4m| r° r
dy' _ 1[3(z-¢&)d cosy
06, 4m| r° r

Applying previously presented discretization of bmundary of domain, numeri-
cal calculations of partial derivatives are nofidifit to obtain. These derivatives are
determined at the internal nodes.

3. Boundary element method - temperaturefield

The Pennes equation (6) can be written in the form

(x,y,z2)[@ : B °T(xy.2) Q(x,y,z7 O (22)
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where
Q(X’ Y, Z) :Qperf +Qma +Qe(Xa Y, Z) (23)

The boundary integral equations corresponding &odfuations (22) can be ex-
pressed as follows [6-8]

B(&1 8 &) T(E En ) +[[a(x v, 2)T (8,8, 85 X, Y, 2)dr =

r

JIT(xy. 20 (60 &0 &5 %y, )+ (24)

[[f(x v. 2)T" (& & 85 %, v, 2) &0

where
T (81 820 820 X, Y, 2) :ler (25)

and

q* ({;1, {;2, <i3, X, V. Z) _ _kaT* (‘t:l’ ‘22’ {531 XY, Z) _ d (26)

on 4qr3
while q(x, y, z) =-AdT (x, y, z) / n.

To solve the equations (24), not only the boundaryalso the interior of the
domains considered should be discretized.

For constant boundary elements and constant iriteetia one obtains the fol-
lowing systems of equations

iWﬂqj =iZ”Tj +2L:Pi,q, i=12,..N (27)
where - - -
W, =”T* (s Ear Eq0 X, Y, Z) 0T, (28)
and k
Z :!Iq* (4,850 Ear X, Y, 2)0T,, 2]
2=z, i=12.N (29)
"
while

R={l[T (& &an Ear Xy, 2) 0O (30)
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So, the system of equations (27) can be writteheérmatrix form
Wq=ZT +PQ (32)

The remaining boundary conditions should be intoeduto the system of equa-
tions (31). The solution of (31) allows one to cddte the 'missing’ boundary

temperaturesl; and heat fluxes);. Next, the temperatures at the internal nodes
are calculated by means of formula

Ti :ZzijTj _Z\N.qu' +Z PQ (32)

In the paper the external boundary of the tissiseble@n divided into 832 constant
boundary elements. To solve the Pennes equatitimeimteriorQ, theL = 1024
internal cells have been distinguished.

4. Results of computations

The 3D domain of dimensions 0X£B104x0.08 m has been considered. The
heating area is described as {0.632<0.048, 0.01%xy<0.028,z=0 m},
{0.032<x<0.048, 0.01%X y< 0.028,z= 0.04 m} and the voltage applied on the-
se surfaces is 15 V and5 V, respectively. The following parameters haeerb
assumed: thermal conductivity of tissie= 0.5 W/(mK), perfusion heat source
Qpert = =200 W/n?, metabolic heat sour@@m = 420 W/ni [2]. On the skin sur-
face the Robin condition has been accepteg=(45 W/niK, T, = 20°C). The
electric conductivity equals ®= 0.4 S/m, dielectric permittivitys = 200G (o =
= 8.8910°"* C¥(Nm)).
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Fig. 2. Temperature distribution in tissue withelgctric field
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Figure 2 illustrates the temperature distributionthe tissue without electric
field influence. The distribution of electric field shown in Figure 3, while Figure
4 illustrates the temperature field in the tissulgjscted to the electric field.

Fig. 3. Electric field distribution
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Fig. 4. Temperature distribution subjected to tleeteic field

Conclusions

Boundary element method has been applied to shiveaupled problem con-
nected with the biological tissue heating. The 3Bthmmatical model basing on
the Pennes equation supplemented by the equattenmdring the electric field
due to the external electrodes action has beend=syes.
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The next step of investigations will concern theagerature field determination
in the tissue with a tumor subjected to the aabibrexternal electrodes (3D problem)
and it will be the extension of problems presertef®], where 2D model has been
considered.

Acknowledgement

This work was supported by Grant No N N501 3667 34 from the Polish Ministry of
Science and Higher Education.

References

[1] Lv Y.G., Deng Z.S., Liu J., 3D numerical study dretinduced heating effects of embedded
micro/nanoparticles on human body subject to esfemedical electromagnetic field, IEEE
Transactions on Nanobioscience 2005, 4, 4, 284-294.

[2] Majchrzak E., Dziatkiewicz G., Paruch M., The mdidel of heating a tissue subjected to exter-
nal electromagnetic field, Acta of Bioengineeringl@iomechanics 2008, 10, 2, 29-37.

[3] Majchrzak E., Drozdek J., Paruch M., Heating dfues by means of the electric field - numerical
model basing of the BEM, Scientific Research of lthetitute of Mathematics and Computer Sci-
ence of Czestochowa University of Technology 20@8), 99-110.

[4] Liu J., Xu L.X., Boundary information based diagieson the thermal states of biological bodies,
Int. Journal of Heat and Mass Transfer 2000, 43728339.

[5] Majchrzak E., Numerical modelling of bio-heat trf@nsusing the boundary element method, Jour-
nal of Theoretical and Applied Mechanics 1998,&,487-455.

[6] Majchrzak E., Boundary element method in heat tean§fubl. of the Czestochowa University of
Technology, Czestochowa 2001 (in Polish).

[7] Brebbia C.A., Dominguez J., Boundary Elements, #roductory Course, Computational Mechan-
ics Publications, McGraw-Hill Book Company, Londb®92.

[8] Jabtaiski P., Boundary element method in the analysi®le€tromagnetic field, Publ. of the
Czestochowa University of Technology, Czestochowa8Z00Polish).

[9] Majchrzak E., Paruch M., Numerical modelling of parature field in the tissue with a tumor
subjected to the action of two external electro@egentific Research of the Institute of Mathemat-
ics and Computer Science, Czestochowa Universifofinology 2009, 1(8), 137-146.



