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Abstract. We consider a variational formulation of a nonconwae-dimensional Neumann

problem. The method of obtaining infimum of a relet/functional is based on a general
theorem attributed to Z. Naniewicz, of the minintiaa of a certain class of nonconvex
functionals.

Introduction

In many practical problems, for instance in nordinelasticity, we often mini-
mize integral functionaf of the form

i) = j £ (o u(), Dut) dax,

wheren = " is a bounded domaia: 1 — E™ is a function from Sobolev space
Wiz(0),p = 1, (i.e.u and its first distributional derivative belong £3(1)) and
f: 0x R® x R"™ — R is the Carathéodory function. This latter demarsans
that we want f to be measurable with respect to the first vaeaid it is contin-
uous with respect to the second and third variables

The idea of the direct method of minimizing suckdtionals is to consider
a minimizing sequencéu,,) = W1#{N), that is a sequence such that

lim ymee I (1,) =infll{u):u € Wiz ({n))l

What we have to do is to show that, ) admits subsequenog@ln;J convergent
(in a suitable topology) to some point £ W1# () and establish the lower semi-
continuity of 1 (with respect to that topology). Theg is @ minimum off because

inf{l{u):u e W={)} = 11_{11 I{u,,) =k11_1}n f{unka Iug) = inf !,

The crucial and most difficult task here is toy®ahe lower semicontinuity of
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It is known that iff is the Carathéodory and fulfils suitable growtimditions,
then the lower semicontinuity ofis equivalent to the so-called quasiconvexity of
f. We refer to [1] for details. However, ffis not quasiconvex, the above proce-
dure is not applicable. One of the most popularho®s is to consider relaxed
problems: we quasiconvexify the integrafidThe infimum of the relaxed func-
tional remains the same, but some important inftiomaconcerning the oscillato-
ry nature of the minimizing sequences is lost. Thia serious drawback because
from the applicational point of view, the detailgtlucture of minimizing sequen-
ces is often as important as the minimizers theraselAnother problem is that in
general it is very difficult to find the relaxatidormula for a given nonconvex
functional.

In 2001 Z. Naniewicz [2] proved the theorem enaplirs to seek minima of
functionals with integrands being a minimum of cexvfunctions. He also ana-
lyzed the one-dimensional nonconvex Dirichlet peoll In this paper we use his
theorem to analyze the one-dimensional nonconvexriden problem.

1. Minimization theorem

Let us first introduce some notations. &ywe will denote the bounded domain
in B™ with the Lipschitz continuous boundafy{0; ™) will stand for the Sobo-
lev space of all the functions that are squaregnatele together with their first
partial distributional derivatives. We will alsoeushe abbreviationa.a. anda.e.
instead of almost all andalmost everywhere (with respect to the Lebesgue meas-
ure) respectivelyFor v € H1{0; B™) we will consider the functional

Jlw) = j min{f{x, f;(x:l,Dtﬂ(x}J,g{x, wlx), Dv[x}}}.iﬂ_
n (1)

wheref, g: 1 x E™ x B"™ — H are such that:
(i) w{s &) e B™ x R™"™ — R the functions

N3 x—flxsé), 03x — glx,s &) are measurable;
(ii) foraax €0 fynctions

R™ xR"™ 3 (5,8) = f(x,5,8), R x R" 3 (5,¢) = g(x,5,8)

are continuous;
(i) alx)+c(ls*+ %) = fa,5,4) = Ax) + C(Is]* +1£1%),
alx) +c(lsP+1£17) = {x,5,8) = Alx) + C(Is]% + 11%),
wherea(-) and A(-) are integrable functions iflandc, C are positive
constants.
Notice also that the left hand side of conditiGii) implies the coercivity of
the functional
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Huw) = j f{x,u(x}, Du(x}} dx.

]

We will further write such integrals in the for_u"g Flu) d0 to simplify the no-
tation.

Remark

In a one-dimensional case,if= u(t) is the position of the particle moving
with the velocity Du(t) = u'(t) and f(x,s, &) = %EE, then functional describes
the kinetic energy of that particle.

Now we state the definition of the quasiconvexitgt w — R™ be a bounded
domain,C3(w, R™) - the space of all vector functiozs= (zy, ..., z,,) such that for
all i =1, ...,n function z; has a compact support i and is continuous with its
first distributional derivative.

Definition 1

Let h: m™™ — WM. We say thaf is quasiconvex if for every matrik € E™*™

everyw and eveng described above, the following inequality holds:

meas{w) - h(F) = j .h'[f + Dz(x}} dx,

ol

where meau) stands for the Lebesgue measure of thesset

Remark

(a) The most typical example of a quasiconvex fiancis the convex function.

(b) In the scalar case =1 orm = 1), the notions of convexity and quasicon-
vexity are equivalent.

(c) The notion of quasiconvexity was introducedCharles B. Morley in 1952.
For it turned out that the assumption of the coityeaf the integrand of
energy functionall is inconsistent with the principle of the matefii@me -
indifference. See [3] for a review of the topic.

We consider the minimization problem of the form

inf{J(v): v € HY{((:R™)} == a, ()
where] is given by (1):

J@) = [ min{F(), 5@))an

It is known that if f fulfils conditions (i}, (ii) and (iii"): 0= flx,5¢&) =
A(x) +C(Is]* +1£1%), then the sequential weak lower semicontinuity!ofs
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equivalent to the quasiconvexity pfwith respect to the third variable. However,
the integrand of] is not quasiconvex in general, therefore the tasutot appli-
cable.

Theorem 2 (Z. Naniewicz 2001)

Suppose that functiong and g are quasiconvex and satisfy, (ii) and (iii).
Then there exist:
(a) sequenca, € HI(;R™), wie .~ 1 weakly inH* (;R™),
(b) sequenceg'gjl:k}:Hliﬂ;Rm} - {0,1}, X;k}:Hi(ﬂ;]Em} - {0,1)

with Xj;k}(uk};{j;k](uk} =1 such that;{;'j';k'ﬁ'I —in X;k}—>xg, weak® in

k—oo

L=(0), with y,:0 = [0,1], x,:0 = [01),and y + 3, = 1.
These sequences have the properties:

(©) limyeaee fy | 2 ) + 27 (i) g )] a2 =
(@) Vow € B0 E™) f [ 72 Cudfwd + 2 () glu)] do <

Ja [X;k} (w)flw) + xérk}(tﬂ}g(w}] dn.
If additionally ? ’
(e) limsup [, [X'f" () (Flug) — F(W)) + I}k}(uk} (gl — g(u})] dl =0, as
k= oo, theny
is a solution of the primal probler(), i.e. [, min(f(u), g(u))d0= & and,
moreoverlimy ., [, (f(w) — f(u)) d0 = 0and [, (glw)—glw))dn =0

The above theorem enables us to introduce ®ymalled the relaxation term.
Namely, we have

f (}:’f}"(ﬂ} + xgg(u}) d—R =g,

n

and if(_:{ff(u} + _:(gg(u}) = min( f(u),g(w)) thenR = 0.
In many practical cases it is possible to find tleplicit formula for
R = ja{ujxﬂxg}, This is the subject of the next section.

2. One-dimensional nonconvex Neumann problem
Let 0 =1 = (0,1) and define fow € H; (), the functional

Jlu) = f min{%alu'lz+u:,%a'[|u’—1|2 +ul) + c}dx,
i
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Where a,c are real constantg = 0. We consider the following minimization
problem:

inf{J(v):ve Hy(N}=a (2)

We proceed analogously as in [2]. According to Teeo2 there sequencémk],
[ }j [ "‘}] such thatyw € H;(I) there holds an inequality:

J‘{Xf sa(fu |2 +ul) + e [ﬂ(luL—1|2+u§}+ c]}dx-:_:
F)

EJ.{ E2a(lw'l?+w) + 2P [Za(lw — 112 +w) + ¢} ax. (3)
i
This means thatt ,, is the critical point of the functional

:

JE(v) = J { W20 (1) 2 + v2) +;{:""}[ a(lv' —1]% +v%) +c]}d =

T
= j { J{:':Ln;',l'rs"l +;{_' %alv’— 112 + %a'r:-'2 + X;k}c}. {4)
i

Thereforevw € H (Il we have

j {[X;k}ﬂu;; + l’;k}a(u;c - 1}] w'+ auy, w}dx =0.

I

By the du Bois-Raymond lemma, constani R exists such that

x

X;k}au;{ + ;{;k}a(u;{ —-1) = j au (s)ds+ ey. {5}

o
Forw € Hy(1) denoteH (w) (x) = f;uk(s}ds Equation (4) has now the form
(k) ! (k) ! _
X; auy tx, alu, —1) = H{u,) +ey. (6)

Multyplying (6) by}, and doing some algebraic manipulations we get

(k1 7,1 (&)
Xf §ﬂ|u;<|‘+}{fg ,‘aluk 1|° +iaug +y, =

%H(uk}u;‘+%eku;{—%_¥gma g+ _:{ a4l ﬂuk"'-l'g : )]
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Observe that the left hand side of (7) is exadily integrand of* given by (4).
Now, multiplying (5) byI;"} and using the fact thq@k} -x;k} = 0 we get

1 € 1 ( 110 1 (
Exgkjau;c =3 gk}H(uk} + Exgmek + Exgk} a,

which inserted into (7) leads to

{ (k1 2 (i1 A 1 (ke
f‘k}(uk}=j (X}HEGW;J“"X; }Ealu;{—il‘+§auk+x;]c)dx=
I

= j (%H(’uk}u;{ - %r;k}H(uk} — %X;k}ek + r;k}c+ %aui + %eku;{) dx (8)
I

Sequencée, ) as bounded im has a subsequence convergent to someR.

By the Sobolev imbedding theorem, sequefize) is convergent to somi in
C(I). This means that we can pass to the limif as o in (8) and get

Jw) =a = J‘ (%H(u}u’ - %_:{:'QHEM} —%_:{'ge+ XgC+ %mﬂ + %eu’)dx (9)
I
Again from (6) we get
2 ey, = Hw)x + ¢ Ve,
and
1), = Hu )y + y Pe + x Ve,
Adding the above inequalities yields

1 1 (
'u;c = EH(uk} =+ EE;{ + Xlgk-:l‘

As each term in this equality is weakly convergent.*(i), we can pass tas
with &:

u' = EH(’L{} + ﬁe +Xg (10)
With the help of (10) we can then write

1 7 1 1 1 7 1
saxslu' P = sy s HOwu' + 2y peu’ + oy pau’ + oy pyg au’
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and

%axglu’ —1]2 = %XQH(M}M’ - %IQHEH} + %;(geu’ — :—L;(ge —

1, 1
—OU Xrkg + s3X f A g
and further

%a,vgflfu’l2 +%axg|u’ - 112+ %afuz +x =

= 2Hu — Iy Ha) + e — Yo+ Jau? + yoc +Igre

Observe that the right hand side of the above exua in fact the integrand in (9)
plus ¥;¢ and =¥ x7a.
We can now write the expression for the infimuny:of

o= f [%H(u}u’ — %IEH(H} +leu’ — %;{_ge +lau® + ;{_'gc] dx =
1

1 7 1 7 1 .
= j [Eaxf [’ + Eaxg|u’ —1]* + Jau’ + ch] dx — R{XﬂXg}a (11)
I
where

1 1
R(xpxg) = j A gXfadx =y xra
I

is the relaxation term. Of courgetakes its maximum valugs if x5 =1z =13 If
xfg=0ory, =0, then the relaxation term vanishes and we havesthgion of
the classical one-dimensional Neumann problem.aliicplar, this is the case if

(%) L
sequencefs converges strongly ta (or D) i.e. if it is constant for alk larger
than somek,,.
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