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Abstract. In this paper we study the properties of generalized fractional derivatives (GFDs) 

with respect to the reflection mapping in finite intervals. We introduce symmetric and anti-

symmetric derivatives in a given interval and a split of arbitrary function into [J]-

projections - parts with well-defined reflection symmetry properties. The main result are 

representation formulas for the symmetric and anti-symmetric GFDs of order α	∈ (0,1) 

which allow us to reduce the operators defined in the interval [a,b] to the ones given in 

arbitrarily short subintervals. 

Introduction 

In our previous papers [1, 2], we investigated the reflection symmetry in frac-

tional calculus. It appeared that the reflection operator which turns the left-sided 

fractional derivatives into the right-sided ones allows us to reduce the symmetric 

and anti-symmetric combinations of these operators to non-local derivatives deter-

mined in arbitrarily short subintervals. We also demonstrated that in some cases 

this property of fractional derivatives leads to a new phenomenon in fractional 

variational calculus - some of the Euler-Lagrange equations can be localized in 

subintervals of the main time-interval. 

Fractional variational calculus, first introduced by Riewe in [3, 4], was developed 

by Agrawal in [5], Klimek in [6, 7] and studied in many papers (compare [8-20] 

and the references given therein). In principle it leads to complicated integro-

differential equations which in contrast to the one-sided fractional differential 

equations cannot be easily and explicitly solved. This is the reason why a localiza-

tion (if demonstrated in the general case) would be useful in the development of 

numerical and exact methods of solving fractional Euler-Lagrange equations. 

In the present paper we consider the reflection symmetry in generalized frac-

tional calculus introduced by Agrawal in [21]. In the definition of generalized frac-

tional derivatives (GFDs), the non-local component is based on an arbitrary kernel. 

Let us point out that the first generalized operators of this type were defined in 

papers [22-24], where the kernel is a Mittag-Leffler function. The GFDs with such 

kernels have been recently applied in a study of wave equations and string vibra-

tions [25, 26]. Thus, the question arises whether in this general fractional calculus 
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the operators have similar properties with respect to reflections in finite intervals. 

The results enclosed in this paper confirm that in the case, where the kernel of the 

non-local part is invariant with respect to translations, we can define the symmetric 

and anti-symmetric GFDs and represent them in the form of operators determined 

on arbitrarily short subintervals of the initial time-interval [a,b]. 

1. Preliminaries 

In this section we recall the basic definitions from generalized fractional calcu-

lus introduced in [21]. In the standard fractional calculus non-local differential 

operators are compositions of integer order derivatives and certain integral opera-

tors based on kernels - power functions. In the generalized fractional calculus the 

derivatives are similarly constructed, but the kernels are arbitrary functions defined 

in [a,b] for which the integrals, given below, exist. 
 

Definition 1.1. Let � > 0. The operator ��
� of order � is given by the formula 

 ��
����� = � � 	�

�

�
��, 
���
��
 + � � 	��
, ����
��
�

�
, (1) 

where � < � < 
,� = ��, �,
,�,�� is a parameter set (called P-set), 	�(�, 
) is 
a the kernel which may depend on parameter �, and the parameters �	and � are two 
real numbers. 

The generalized fractional integrals (GFIs) defined above include standard frac-

tional integrals, the left- and right-sided ones for kernels being power functions 	���, 
� = 	��� − 
� = �� − 
����/�(�) and a suitable choice of parameters P. 
It is easy to check that the GFIs fulfill relations given below. 
 

Property 1.2. Operator ��
� satisfies the following formula 

 ��
����� = ����

� ����+ ����
� ����, (2) 

where � = ��, �,
,�,��,�� = ��, �,
, 1,0�,�� = (�, �, 
, 0,1). 
Operator ��

� satisfies the following integration by parts formula 

 � ������
������� = � ������∗

��

�

�

�
������, (3) 

where � = ��, �,
,�,��,�∗ = ��, �,
,�,��. 
In our considerations we shall investigate reflection symmetry properties of GFDs. 

In the finite interval [a,b] the reflections operator assigns function at point t its 

value at point a+b−t. 
 

Definition 1.3. We define the reflection operator Q in the interval [a,b] as follows 

 ������� = �(� + 
 − �). (4) 
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Assuming that the kernel determining a given fractional integral operator is invari-

ant with respect to translations we obtain a simple relation between reflections and 

GFIs. 
 

Property 1.4. If 	���, 
� = 	�(� − 
), then the ��
� and � operators satisfy the 

following identity 

 ���
����� = ��∗

� �����, (5) 

where parameters � = ��, �,
,�,��,�∗ = (�, �,
,�,�). 
Now, using the above integrals we define the Riemann-Liouville and Caputo type 

generalized fractional derivatives. 
 

Definition 1.5. The GFD of Riemann-Liouville type ��
� and of Caputo type	��

� are 

defined as follows: 

 ��
����� = �	��

	���(�) (6) 

 ��
����� = ��

	���	�(�), (7) 

where � − 1 < � < � and � = ��, �,
,�,��. 
Both the ��

� and ��
� derivatives have well-defined commutation relations with 

respect to the reflection operator Q. These relations result from Property 1.4 for 

GFIs and properties of the integer order derivatives with respect to reflections. 
 

Property 1.6. If 	���, 
� = 	�(� − 
), then the operators ��
�	, ��

� and � satisfy the 
following identities 

 Q��
����� = (−1)	��∗

� ����� (8) 

 Q��
����� = (−1)	��∗

� �����, (9) 

where � = ��, �,
,�,��,�∗ = (�, �,
,�,�). 
Now we define the symmetric and anti-symmetric GFIs of order n-α in the in-

terval [a,b] which are special cases of GFIs given in Definition 1.1. We shall apply 

them further in the construction of the symmetric and anti-symmetric derivatives. 
 

Definition 1.7. The operators �[�,�]
	�� and �[�,�]

	��
 are given by the formulas 

 �
�,��
	������ = ���

	������ + ���
	������ = �(�,�,�,�,�)

	��  (10) 

 �[�,�]

	������ = ���
	������ − ���

	������ = �(�,�,�,�,��)
	�� , (11) 

where	�� = ��, �,
, 1,0�, �� = ��, �,
, 0,1�. 
The above integrals are the non-local component of the symmetric and anti-

symmetric fractional derivatives over interval [�,
]. 
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Definition 1.8. The symmetric �
�,��
� ,�
�,��

� 	and anti-symmetric �
�,��

�
,�
�,��

�
 deriv-

atives of order � ∈ (� − 1,�) in interval [a,b] are given by the formulas below: 
 �
�,��

� ���� = �	�
�,��
	������ (12) 

 �
�,��

� ���� = �	�
�,��

	������ (13) 

 �
�,��
� ���� = �
�,��

	���	���� (14) 

 �
�,��

� ���� = �
�,��

	���	����. (15) 

The above derivatives can be expressed in terms of integer order derivatives and 

integrals being a generalization of Riesz potentials in finite interval [27]. 
 

Property 1.9. The symmetric �
�,��
� ,�
�,��

� 	and anti-symmetric �
�,��

�
,�
�,��

� 	deriva-
tives are given by the following explicit formulas  

 �
�,��
� ���� = �	 � 		���|� − 
|��

�
�(
)�
 (16) 

 �
�,��
� ���� = � 		���|� − 
|��

�
�	�(
)�
 (17) 

 �
�,��

� �(�) = �	 � 		���|� − 
|������ − 
��

�
��
��
 (18) 

 �
�,��

� ���� = � 		���|� − 
|����(� − 
)�	�

�
�(
)�
. (19) 

Let us observe that the ��
� and ��

� derivatives can be rewritten using the notion of 

symmetric and anti-symmetric derivatives given in Definition 1.8, namely we have 

 ��
� =

�
�

�
�
�,��
� +

���

�
�
�,��

�
, (20) 

 ��
� =

�
�

�
�
�,��
� +

���

�
�
�,��

�
. (21) 

Taking into account relations (8), (9) we can derive the commutation rules for the 

symmetric and anti-symmetric generalized derivatives of order α	∈ (� − 1,�): 
 ��
�,��

� = (−1)	�
�,��
� �				��
�,��

� = (−1)	�
�,��
� � (22) 

 ��
�,��

�
= (−1)	
��
�,��

� �				��
�,��

�
= (−1)	
��
�,��

� �.  (23) 

From the above relations it follows that the respective derivatives of order α	∈ (0,1) 
commute (anti-symmetric GFDs) or anti-commute (symmetric GFDs) with the 

reflection operator: 
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 ��
�,��
� = −�
�,��

� �				��
�,��
� = −�
�,��

� � (24) 

 ��
�,��

�
= �
�,��

� �				��
�,��

�
= �
�,��

� �. (25) 

In the paper we shall analyze reflections in a hierarchy of intervals [�,
�]. First, 
we define the corresponding reflection operators. 
 

Definition 1.10. Reflection operators �
�,���	acting on arbitrary function � deter-
mined in the interval [a, b] are given as follows: 

 �
�,������� = ��� + 
� − ��, (26) 

where  

 
� =
�������
�

��
, � = 0,1,… (27) 

2. Reflection symmetry of generalized fractional derivatives 

Now we shall investigate properties of GFDs acting on components of functions 

which we defined in papers [1,2]. Below, we recall this definition of [J]-projections/ 

components of arbitrary function. 
 

Definition 2.1. Let � be an arbitrary function determined in [�,
] and vector ��� = [��, … , ��] be an arbitrary m-component vector from set �0,1 �. The follow-
ing recursive formulas define the respective projections/components of function �: 
 �
����� = �

�
(1 + �−1���
�,��)�(�) (28) 

 �
�,����
�(�) = !�

�
"1 + �−1������
�,���#�
����� � ≤ 
�

�

	�
�
����� � > 	 
�,

 (29) 

where �, ��
� ∈ �0,1 . 
Let us note that function � can be split into the respective projections for any � ∈ ℕ 

 �
����� = ∑ �
�,���
��� ��� (30) 

 ���� = ∑ �
��
�� (�),  (31) 

where the summation in formula (31) is taken over all m-component vectors with 

coordinates in the two-element set �0,1 . 
We illustrate the construction of [J]-projections with a simple example of func-

tion ���� = �� for which we shall explicitly calculate some of its components in 
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interval [0,1]. Here the reflection operator acts as follows on arbitrary function g: �[�,�]���� = �(1 − �). Thus, for the monomial function f given above we have: 
�
����� = �

�
��� + (1 − �)�� = �� − � + �

�
	 

�
����� = �

�
��� − (1 − �)�� = � − �

�
. 

Having split the function into projections �
�� and �
��, we can calculate the set of 
projections: �
�,��,	�
�,��,	�
�,�� and �
�,��. We apply the reflection operator in interval 

[0,1/2] which acts on arbitrary function g as �[�,�/�	]���� = �(�
�
− �) and obtain: 

�
�,����� = %�� − �

�
� + �

�
� ≤ 1/2

�

�
�
����� � > 1/2

 

�
�,����� = %−�

�
� + �

�
						� ≤ 1/2

�

�
�
����� 						� > 1/2

 

�
�,����� = %−�

�
							� ≤ 1/2

�

�
�
����� 							� > 1/2

 

�
�,����� = &t − 1/4 						� ≤ 1/2
�

�
�
����� 						� > 1/2

 

Let us point out that the set of ���, ���-projections can only be derived if [j]- 
-projections are known. In general, the calculation of the ��, ��
��-projections re-
quires that the [J]-projections should be previously determined. This is the reason 

why we call the formulas from Definition 2.1 the recursive ones. 

In this paper we consider the properties of GFDs of order α	∈ (0,1). The general 
formulas for GFDs of arbitrary order and their application will be the subject of the 

subsequent paper. 
 

Proposition 2.2. Let �
�� be the [j]-projection of function � given by formula (28). 
The �
�,��

�  and �
�,��
�  operators in interval ��, 
�	can be represented as follows 

 �
�,��
� �[�]��� = (1 + (−1)�
��[�,�])�
�,���

� �[�]��� (32) 

 �
�,��
� �[�]��� = (1 + (−1)�
��[�,�])�
�,���

� �[�]���,  (33) 

where 
� =
�
�

�
	,	α	∈ (0,1). 

Let �[�] be the [�]-projection of function � given in equation (29) for vector ��� = [��, … , ��] with components �� ∈ �0,1 , ' = 1,… ,�. Its symmetric derivatives 

of order α	∈ (0,1) in the interval [�,
] can be represented as follows: 
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 �
�,��
� �[�]��� = 2� ∏ �
�,���

� �[�]���[�]  (34) 

 �
�,��
� �[�]��� = 2� ∏ �
�,���

� �[�]���[�] , (35) 

where we denoted as ∏ 	[�] the ordered product of the projection operators 

 ∏ ≔
�� 2��"1 + �−1��
���
�,��#…(1 + �−1��
���
�,���),  (36) 


� are determined in formula (27) and derivatives in subintervals [�,
�] are 
explicitly given as follows for arbitrary function g: 

�
�,���
� ���� = �) 	����|� − 
|���

�

�(
)�
 
�
�,���
� ���� = ) 	����|� − 
|���

�

���
��
. 
Proof. First, we check property (32) using the integration properties and reflection 

properties of the first order derivative 

						�
�,��
� �[�]��� = ��
�,��

����[�]��� = �)	����|� − 
|��

�

�[�]�
��

= �) 	����|� − 
|���

�

�[�]�
��
 + � )	����|� − 
|��

��

�[�]�
��
						 
Next, we apply substitution � + 
 − 
 = * and property of the projections with re-
spect to the reflection in interval [a,b]: �
���� + 
 − *� = �−1���
��(*) and obtain 

�
�,��
� �[�]��� = �) 	����|� − 
|���

�

�[�]�
��
 + 
+�) 	����|� − � − 
 + *|���

�

�[�]�� + 
 − *��* = 

= "1 + �−1��
��
�,��#� ) 	����|� − 
|���

�

�[�]�
��
 = 

= "1 + �−1��
��
�,��#�
�,���
� �[�]���. 
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Let us observe that equation (32) remains valid when we replace b by 
� and take � ∈ [�,
�]: 

�
�,���
� �[�,����]

��� = (1 + (−1)�
�����[�,��])�
�,����
�

� �[�,����]
���. 

Using this observation, we can prove property (34) by means of the mathematical 

induction principle. From (32) and the definition of the projection operator (36), we 

obtain for the ��, ��
��-projections 
 �
�,��

� �[�,����]
��� = 2� ∏ �
�,���

� �[�,����]
���[�] = 

 = 2� ∏ (1 + (−1)�
����
[�] �[�,��])�
�,����

�
� �[�,����]

��� = 
 = 2�
� ∏ �
�,����

�
� �[�,����]

���[�,����]
 

which proves formula (34) to be valid for arbitrary � ∈ ℕ. The calculations for 
properties (33) and (35) are similar. 

Analogous proposition is valid for the anti-symmetric GFDs. 

 

Proposition 2.3. Let �
�� be the [�] projection of function � given by formula (28). 
The �
�,��

�
 and �
�,��

�
 operators in interval ��, 
�	can be represented as follows: 

 �
�,��

� �[�]��� = (1 + �−1���
�,��)�
�,���

� �[�]��� (37) 

 �
�,��

� �[�]��� = "1 + �−1���
�,��#�
�,���

� �
�����, (38) 

where 
� =
�
�

�
	, α	∈ (0,1). 

Let �[�] be the [�]-projection of function � given in equation (29) for vector ��� = [��, … , ��] with components �� ∈ �0,1 , ' = 1,… ,�. Its anti-symmetric deriv-

atives of order α	∈ (0,1) in interval [�,
] can be represented as follows 
 �
�,��

� �[�]��� = 2� ∏ �
�,���

� �[�]���[�]  (39) 

 �
�,��

� �[�]��� = 2� ∏ �
�,��

� �[�]���[�] ,  (40) 

where we denoted as ∏ 	[�] the ordered product of the projection operators 

 ∏ ≔
�� 2��"1 + �−1����
�,��#…(1 + �−1����
�,���) (41) 


� are determined in formula (27) and derivatives in subintervals [�,
�] are ex-
plicitly given as follows for arbitrary function g: 
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�
�,���

� �(�) = �) 	����|� − 
|������ − 
���

�

��
��
 
�
�,���

� ���� = ) 	����|� − 
|������ − 
����

�

��
��
. 
Conclusions 

In the paper we introduced the symmetric and anti-symmetric generalized frac-

tional derivatives in interval [a,b] and analyzed their properties with respect to the 

reflection mapping. Depending on the order of derivative, they commute or anti-

commute with the reflection operator. Next, we investigated how the GFDs in 

symmetric and anti-symmetric version act on components of functions with well-

defined reflection symmetry. The main result presented in Propositions 2.2 and 2.3 

are representation formulas for the �
�,��
� ,�
�,��

�  and �
�,��

�
,�
�,��

�
 derivatives. We 

demonstrated explicitly that for each � ∈ ℕ,	they can be written using only the �
�,���
� ,�
�,���

�  or	�
�,���

�
,�
�,���

�
 GFDs respectively. In the case of standard frac-

tional calculus such properties of symmetric and anti-symmetric operators led to 

a localization of Euler-Lagrange equations [1, 2]. Generalized fractional mechanics 

and the localization of its equations of motion will be the subject of our further 

investigations. 
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