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Abstract. The hypercomplex fractals obtained from generalizations of J- and M-sets, apart
from their visual aesthetics, play an important role in the mathematical description in vari-
ous fields of physics. The generalizations of J- and M-sets to the four-dimensional Euclid-
ean space are well known and well described. However, very few studies were done for the
higher-dimensional generalizations. The paper discusses the J-sets generalization to the
hypercomplex algebra of bioctonions and completes the previous studies in this domain.
The symmetry properties were studied for quadratic mapping of the bioctonionic J-sets. The
discussion of limitations of the further generalizations of J-sets to higher hypercomplex
spaces was also provided.
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Introduction

The classical Julia and Fatou sets and their generalization, Mandelbrot set, have
been investigated in various domains: self-similarity, periodicity and many others.
The simple recursive equation

2
Zr =2 tc, (D

where c is the control parameter, which completely defines the shapes and topolo-
gies of resulting J-sets (both parameters are complex, namely z,c € C), could gen-
erate the structures of infinitely high complexity. The generalization of the J- and
M-sets to higher spatial dimensions is of interest to many scientists and enthusiasts.
To date some generalizations are known: Pickover [1] and Norton [2] proposed the
J-sets constructed using quaternions, the hypercomplex vectors presented in 4D
Euclidean space, while Griffin and Joshi [3, 4] constructed J-sets using octonions,
the hypercomplex vectors presented in 8D Euclidean space. In the latter cases the
parameters of (1) are quaternions (z,c € H) and octonions ( z,c € O), respectively.
Further generalizations could be done using higher-dimensional Cayley-Dickson
algebras, however every extension of C results in loss of the algebraic properties
of a given algebra, which will be discussed later.
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With the increase of the dimension of a vector space, the complexity of J repre-
sentations increases significantly. Therefore it is necessary to investigate their
symmetry properties in order to simplify the operations on them. The scientific
group from the Belarussian Academy of Science studied the symmetry of J-sets
based on quaternions, biquaternions [5] and octonions [6] and proved that due to
the symmetry of these hypercomplex J-sets they could be defined by two numbers:
the real part of the (bi)quaternionic/octonionic control parameter C; and the
modulus of this parameter |C |

Hypercomplex numbers, including J-sets, have various applications in physics
theories, primarily in relativistic mechanics and kinematics. Quaternions were used
in mechanics since they were introduced by Hamilton in 1843 [7]. The intensive
application of the quaternions and octonions and their derivatives could be observed
in electrodynamics, cosmology, quantum mechanics and special relativity [8-12].
Moreover, the investigation of hypercomplex fractal sets may be helpful in the
defining of dynamic systems. The bioctonions seem to be a tool which could be
used in the black holes and supergravity theories [13].

This paper deals with the special case of hypercomplex algebra - bioctonions.
In the presented study the symmetry properties of J-sets constructed in such vector
space were investigated based on a quadratic mapping in the form of (1). Moreover,
the higher-dimensional and derivative to octonionic algebras were analyzed from
the point of view of possibilities of construction of further variations of J-set.

1. Hypercomplex algebras

The simplest generalization of complex algebra C is the quaternionic algebra
H. The quaternion z is a set of four real numbers (basis elements) x,,x,,X,,X;
with one real ¢, and three unreal units e,e,,e;, ef =e; =e; =—e, =—1 [14].
The commutation is described by the following form:

The quaternions are not commutative with respect to multiplication: z, -z, # z, - z;,
zy,z, € H, however it holds the multiplication associativity: (z1 -22)- z3 =12 -(22 -z3).
In terms of further studies it is suitable to represent (2) in the form of combination
of a scalar and a vector of imaginary elements:

Z=X,+X. 3)
Thus, the conjugation of a quaternion could be presented as follows:

z= conj(z) =Xy —X, (4)
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then
zZ=2zz= |Z|2 )

is a scalar and forms the modulus of z:

|z|= /ix? : (6)
i=1

The next generalization of C is the octonionic algebra O. The octonion
z could be presented in the same form as in the case of quaternions (see (2)) [14]:

Z=eyXy + eX| +eyXy +e3X; + e4X, +esXs + egXg + 7%, @)

where only the first element in (7) is real, thus the octonions hold the notation
assumed in (3)-(6). The octonions do not hold commutativity nor associativity
algebraic properties, however satisfy the weaker form of associativity - the alterna-
tivity, i.e. the subalgebra generated by two elements of O is associative. The alge-
braic properties of O are described by the multiplication table - Table 1 [15]. This
table could also be presented by the following relations:

ee; =—0,e) +Nye, I j,k=1..7, (8)

where 7, is a totally antisymmetric tensor for ijk = 123, 145, 176, 246, 257, 347,
365 and e;e, = epe;, = e;, eye, = e,.

Table 1
Multiplication table for octonions
X €y e (23 e3 [N s (43 er
() € €] ey e3 €4 [ € e7
(2] (3] —€y €3 —€s [ —€4 —e7 €e
e, e —e3 —€p (4] €6 e7 —€4 —€5
e3 €3 e —€] —€y ey —€¢ [ —€4
ey ey —es —eg —ey —eo e e, e;
es es ey —ey e —e —eo —e; e,
e e er e, —es —e, e; —eo —e,
e; er —eg es e, —e3 —e, e —e

Further generalizations are possible using Cayley-Dickson construction, which
could result in sedenionic (16D) complex algebra, pathionic (32D) complex alge-
bra, chingonic (64D), etc., however the algebras beyond octonions do not satisfy
even alternativity algebraic property and thus cannot be composition algebras.
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Another algebras could be constructed by using tensor product of the above-
mentioned ones [15]. In the following way the biquaternions C® H could be con-
sidered, which consider the complexes of C and reals of H. This algebra holds
the properties of H, i.e. it is non-commutative and associative. Moreover it fulfills
the multiplication properties of octonions, i.e. the multiplication table (see Table 1)
is the same for C ® H. The same operation forms the bioctonionic algebra C® O,
which holds properties of O. Other combinations are possible, e.g. quateroctonions
H® O or octooctonions O ® O, however such algebras are not alternative,
i.e. there exist two elements of each of these algebras, which does not continue
the associative subalgebra [16].

2. Bioctonionic J-set and other generalizations
The biquaternions introduced in [1] have the modified structure of (3):
Z=6xy+X, 9)

where parameter & could assume three values: ” = —1 (ordinary complex numbers),
g’ =1 (double numbers) and £*=0 (dual numbers) [17]. Such an approach could
be generalized to bioctonions. The equation (1) for them takes the form:

Zy > &zi+c, 2,ceCQRO. (10)
The equation (10) maps 8D Euclidean space (s> =1), 8D Galilei-Newton space

(> =0) and 8D Minkowski space (g = —1) on itself (cf. [5, 17]). The following
cases generated by (10) could be presented:

~ Zkn —)—EZIE—C, (11)
Z,, D> EZ+C, (12)
—Z > —£2; —C, (13)

where ¢ =¢; +c¢. The sets (11)-(13) are invariant under a reflection defined by the
bioctonion conjugation. Moreover, there is additional invariance:

Z;, = 02,0, &, = 0,0, C, =0C,0, 00 =1. (14)
This implies the equivalent form of (10):

Zia ez ) +c. (15)
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If all points z, € C, then the points z, € C for the Julia set J, thus J- € Jcgo-

Considering (14), which defines the symmetries of J g, the bioctonion o takes
form (see [18]):

1+£tan%
0=L=cos£+£sin£, (16)
1+tanzﬂ 2 |c| 2
2

where ¢ is the angle of rotation. Equation (16) shows, that the above-presented
constructions are rotation-invariant. Hence, the J.go could be fully defined by two
numbers, ¢, and |c|

Conclusions

The paper presented the analysis of existence and symmetry properties of bio-
ctonionic J-sets. The bioctonionic algebras could be used for construction of three
types of equations for the generation of 8D hypercomplex J-sets and it was shown
that the further generalization of J-sets on higher-dimensional hypercomplex
algebras and alternative algebras, like quateroctonions and octooctonions, is not
possible because of loss of their algebraic properties.
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