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Abstract. This paper contains an investigation of an open queueing network with positive
and negative messages that can be used to model the behavior of viruses in information and
telecommunication systems and networks. The purpose of research is investigation of such
a network at the transient behavior. We consider the case when the intensity of the incom-
ing flow of positive and negative messages and service intensity of messages do not depend
on time. It is assumed that all queueing systems of network are one-line. We obtained
a system difference-differential equations for the state probabilities of the network. To find
the state probabilities of the network in the transitional behavior applied a methodology
based on the use of the apparatus of multidimensional generating functions. We obtained
an expression for generating function. An example is calculated.
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1. General information

Information and telecommunications systems and networks are becoming more
complex due to the need to improve the reliability of transmission and processing
of information. Construction and study of the mathematical models to assess
the quality of their functioning is an important task. Employment of the classical
models of the queueing theory does not always provide adequate results, since it is
necessary to take into account the model of the characteristic features of systems
and the possible influence of various destabilizing factors, such as a sudden reac-
tion, penetration of viruses or the loss of transmitted or processed data.

It is a network, which in addition to the ordinary flow (positive) messages
is considered as additional Poisson flow of negative messages. On admission to
the network system the negative message destroys one positive message if any
are available in the system, thus reducing the number of positive messages in the
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system by one. Then the negative message disappears from the network without
receiving any service for itself. For example, in computer networks a “positive”
message is a task (program), and “negative” applications are computer viruses.
This reflects the fact that on admission to a computer network, the virus destroys
or causes damage, infects one of executable programs, reducing the number of
existing programs or queries in the system by one. Then the virus disappears from
the network, without receiving any service for itself. It should be noted that the
study of such networks at the stationary behavior was conducted in [1, 2].

2. Formulation of the problem

Consider an open queueing G-network with » single-line queueing systems
(QS).In QS S, from the outside (from the system S;) an incoming flow of positive

(normal) of messages intensity of A;, and Poisson flow of negative messages

intensity of A, i= Ln. All flows of messages entering the network are independ-

ent. The service time of the positive messages in the QS S, exponentially distrib-

uted with mean g, i=1n. Negative messages coming to some system of the
network in which there is at least one positive message instantly destroy (destroy,
remove from the network) one of them. On the assumption of an exponential
distribution of service time of positive messages may not care about what kind of
message is destroyed. After this, it immediately leaves the network itself without
getting any maintenance in the QS. Thus, each QS of the network can be served by
only positive messages, so in the future, when speaking about the positive mes-
sages service, usually for the sake of brevity they are called simply messages [3].

Each positive message is sent to the QS of the S, with probability p;, , and the
negative - with probability p,, ., ng, = ng, =1, i=Ln. A positive message
i=1 i=1

serviced in the QS §,, with probability p; sent to the QS S, as a positive

message, with a probability p, - as a negative message, and with probability

Pio :I—Z(p; + p;) leaving from the network to the external environment
J=1

QS S), irj=1,n.
The state of the network meaning the vector k(t) =(k,t)= (k. ky,....k

n’

1), where

k; - the number of messages at the moment of time ¢ at the system S,, i=1n.

Lemma. Probable states of considered network satisfy the system of difference-
-differential equations (DDE):
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dP(k, < _
%:_;[ ipOf+ﬂ“0ip0f+/ui]u(kf)P(kat)+

n

32 kP =100+ | Aoupi, + 14 [pro +> py (- ulk, ))HP(k +1,0)+
i=1

i=1 J=1

3wl prule, )P+ 1~ 1,0+ py Ple+1,+1,.1)]. ()
i,j=1
where 1, - a vector of dimension n, consisting of zeros, except for the component

— LLx>0
with number of i, which is equal to 1, i=1,n; u(x) :{ <0 - Heaviside function.

Proof. In view of the exponential service times of messages, a random process
k(t)=(k,t) is a Markov chain with a countable number of states. The possible

transitions in the state (k,¢+ Atr) for the time A¢:
1) from the state (k —1,,¢) with the probability A, pau(k,)At +o(At), i=1,n;
2) from the state (k + /,,¢) with the probability

(ﬂfpfo + AoiPoi + HiDy (1 - ”(kj )))At +o(Ar), i= L_n ;
3) from the state (k + 7, — 1,,1) with the probability

,u,.p;.u(kj )At +0o(Al), i=Ln;

4) from the state (k +1, + Ij,t) with the probability s, p; At +o(Al), i=1,n;
5) from the state (k,7) with the probability

(l—f[ﬂ&p& + Aai P +u,-]u(ki)JAt+0(At), i=Ln;
i=1

6) of the remaining states with a probability o(Af) o(Af).

Then, using the formula of total probability, we can obtain

P(k,t+At)=Y" A, poiu(k;) P(k = I,,0) Al +

i=1

+ i[ﬂfpfo + AoiPoi + yl.p,j‘.(l —u(kj))]P(k +1,,t)At +

i,j=1

+ Zn:yip;u(kj)P(kJrI, —I_,-,t)AtJr Zn:p;P(k+I,. +1_1-,Z)At+

i,j=1 i,J=1

+ [1 - i [%,p&- + Aoi Poi + M ]u(k, )jAt + O(At).
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Dividing both sides of this relationship by Ar and taking the limit Az — 0, we
obtain a system of equations for the state probabilities of the network (6). The
lemma is proved.

3. Finding network state probabilities

Suppose that all systems of the network operating in high load, i.e. & () 0
V>0, i= 1,_n, then the system of DDE (1) takes the form
dP kst C + - - C + +
#_ Z(ﬂ’OIPOI+ﬂ’01p01+ﬂi)P(kst)+z%ip01P(k Il’t)+
i=1 i=1
+ Z (ﬂipf+0 + %fpm)
i=1

ke 1.0+ S wlpi Pl 1,-1,0)+ pr P+ 1+ 1,0)]. @)
i,j=1

Denote by ¥, (z,t), where z =(z,, z,,..., 2, ), n-n-dimensional generating function
¥, (z,0) = Z Z ZP(kl,kz, kD)2 257 ez =Y LU Pk, t)HZ
=0k, =0 k,=0 ki =

Oky =0 ky,=0

Multiplied (2) on Hz,k’ and adding together all possible values &, from 0 to
=1
+00, [ =1,n, obtain:

0 0 dP k n n . . B _ 0 0 n
ZZ %Hzlk] =—Z(/10,-p0,- + Aoi Do +/Ui)z---z P(kat)HZ/k] +
k1=0 k,=0 I=1 i=1 k=0 k=0 I=1

+Z%fp012 ZP(k ]l>t)HZIkI+
i=1 k1=0 k=0
+i(y,.p,+0 +ﬂg,p&)i...iP(k+I,-,t)Hz,’" +
i=1 k=0 =0

oy I=1
+Z:1,u,.p,]kZ: z —]],t)Hz
ij= =0 k=0
+ > P, Z Z
i,j=1 =0

Pk+1, +Ij,t)Hz . 3)
/=1

Consider some sums, contained on the right side of (3). Let

Zl(z’t):i%rfpmz ZP(/C 1,,t)sz’.
i=1

k=0 ky=
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Then
2 @0=2 2oz, 3 ZP(k 1,,:)1‘[2 L4l
. Jj= ﬁ_;owk /:=I
s P 3 Ao,
i=1 i=1

Jj= l,n

For sum of Z ,(z.0)= Zn:(,u,.p;{, + Agip(}i)i... i P(k+ Ii,t)ll[z,k’ have:
k=0 k,=0 I=1

i=1

Z (z.0) = Z#,PIOJF%PO,Z ZP(k“‘]nf)HZ kit

/¢7
:ilulp:(—)-i-%lpal i ZP(k t)HZ k; —
=1 Z kj=0 k=1
j= 1nj¢r ]#’

n + - -
_ Z Ui Dio + o Poi ¥ (z,0)—

i=1 i

S PO AP S p ko, k,+1..,kn,t)1i[z,’"

Zi k;=0
j=Ln, j=i [=i
For sum of Z (z,t)= Z,u,p,/ Z Z P(k+1, ]l,t)Hz obtain:
k=0 k=0

i,j=1

23(2’0:

_Z,ulp,j i iP(kl,...,k,_l,k,+1,k,+1,...,kj_1,kj—1,kj+1,

i,j=1 Zj ky=0  k;=1
m=l,n,m#j

H PSS Y ZP(kr)Hz -
=1 i,j=1 Z; k,=0 k=1
m=1,n,m#i

1 i,j
_Zlulpu IIP (Z t)_

i,j=1

k,,t)x

_z#,pu > Pk 0.k e n,t)]_[
i,j=1 Zi ky=0
/:tl

m=1ln,m#j
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And finally, for the last sum

>..ED= up, Z ZP(k+I +Ij,t)Hz

i,j=1 k=0 ky=

we will have:

3 (a0 =

- Z/urpy Z Zp(k I 1 1’ ki+17"'7kj—17kj ’kj+l’ kn’t)><
e K jm{{n;n(;jk.
HZ 2’ Zm’y 2 2Pk f>HZ"’ =
i,j=1 ZiZj k=0 k=l
1#!} m=1,n,m#i

= Z:ulplj lP (Z t)
i,j=1 Z;z

- Z’u’pll Z P(kla . 1 la > 1+1a . nat)HZ

i,j=1 fj k=0

m=1,n,m#j l¢1

Thus for the generating function the inhomogeneous linear differential equations
(DE)

AV, [< - . " fps + Jaups
s Z(%,Pg, +}‘in01' +/ul)_ %,Pazi _ZM_
dt i=1 i=1 i=1 Zj
- Z/ulpy Z/ulpy b ¢ (Z t)_
i,j=1 Zj i,j=1 z;z J
YA S Pk 0k k 0] T -
i kj=0
Jj= ln LJE ]’”
- Z m p,, - > Pk 0.k sk, D] ] 27 -
i,j=1 Zj ki =0 =1
m=1,n,m#j I#i
- Z wpy—— . Plhnk 0.k 0k, D] [ 27 4
i,j=1 Z;z k=0 =1
m=ln,m#j =i

Since all of the QS networks operate under high load conditions, the last two
expressions in the form of the sums in equation (4) will be zero, and it becomes
homogeneous:
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d¥ < + - - C + C i 1+ _i _f
M = _|:Z(%Ip0i +ﬂ‘01p01 +/ui)_z%lp0izi _ZM_

dt i=1 i=1 i=1 Zf

_zylplj z;ulpy :|LP (Z t)

i,j=1 Z i,j=1 ziz J
Its solution has the form

n

¥, (z,n=C, eXp{— {Z (/13,170, +AoiDoi + #,) Z A PoiZi = Z ZL (#,-p,*o +AoiDoi ~

i=1 i=1 “i
n n 1
+ _
_/ufzpijzj_lufzpij_ L. ()
J=1 J=1 z J
We assume that at the initial moment of time network is in state

(o, 05,...2,,0), 0, >0, i=1,n,

P(y 0y, ,0) =1, P(ky ky..sk,,0) = 0,5 at, £ k,, i =11,

Then the initial condition for the last equation (5) will be

¥, (2,0) = P(a), a0, O] [ 27 =] [ 2. Using it, we obtain C, =1.
I=1 =1
Thus, the expression for the generating function ¥, (z,7) has the form

Y, (z,0) = a, (t)exp{z ﬂg,pg,zit}exp{z HiPio + Zo:Po; }x

i=1 Z

i=1 i
X exp{ > wp; . }exp{ > ,u,p,l }H z; (6)

i,j=1 i,j=1

where

n

i=l1

ay (1) =exp{— (0,5 + 20,05, w)t} )

Transform (6) to a form suitable for finding the state probabilities of the
network, expanding its member exhibitors in the Maclaurin series. Then the
following statement
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Theorem. The expression for the generating function has the form

n
0

© 0 © o Z(l 1)
¥, (z.0) = ao(t)z ZZ DI I I I X
=0¢,= q,=041=0 r,=0u,=0 u,=0
- i " -
+In g - + - -
| A po “pis + 2aps ) | T o Py
y J=1 J=1 S %itli=4i=ri +R=u;=U (8)
: AAANN ’ ’
i=1 iditic i

where R = ZF,,U Zu

i=1

Proof. From relation (6) follows that

W, (2,1) = ay(Day(2,0)ay(z,0)a5 (2, 0)a, (2, 0] | 217

where

S

al(za’)=exp{ AP0 }= _n explis, ozt = | i[ﬁ“" pof”I -

i= i=1 i=1 -=O

) o n ) ) /1+12+ Ay
I e AT ST I
| X

Ao on Po1 - Don Z1 "+ 24 s
/1=0 /n=0 i=1 ll' 12
az(z,t):exp{ #iPio +/10 Lo }:Hexp{/uipio + AoiPoi t}:
i=1 i=1 Z;
- i ifq” +an (Mplo +201p01)q ' --’(:“nP;o +%np<§n)qn Mg
=0 =0 ql'qn' "
a;(z,0) = eXP{Z#,P,, —t} = HHexp{,ulp,j —z}
i,j=1 i=1 =1 Z;

skl s

i=1 j=11r;=0

sriress ]
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n n n
- - [#IHPIIJ [/’lnnp;}]
— Z Z PLESS J=1 %
n=0 =0

nk...onl

KA+ +r,,22rl+r2+ Al

x z| TR g 2 =
n n n n
+ +
Hi I | D1 et My | I Py
_ A+t J=1 J=1 R-n R-1,
S Bhon,)
n 1 n n 1
a,(z,1) = exp Z/Uiplj 1 :| Il IeXp Hi Py L=
= Zizj =l =l ZiZj
—an[“'p"’z s ZHH[“”’”’Z i
i=l j=lu;= uy=0 u,=0 i=1 j=1
uy uy
n
o o /UII |p1j /unl Ipl’lj
_ Z ztu]+...+un J=1 J=1 %
M0 1y=0 wl...ou,!
R P T T e Rt M TR ) -u, _
Xz, z, z Mz =

ez,

u " uy

Z Ztu1+ Ay, J=1 ‘ - J=1 Zl—(U+u1)_ 'Z_(UM").
1

" ..t Zy
uy =0 u,=0 Upe...- Uy,

Multiplying ay(¢), a,(z,t), a,(z,t), as(z,t), a,(z,t) and Hz,a’ we get the

I=1
expression (8).

Example

Let the number of QS at network equal » =10. The intensity of the input stream
of positive and negative messages A;, and A,, are equal respectively A5, =1, Ay; =31,
Ao6 =3, Ao =2, Ago =15, D10 =2, Aoy = g4 = Ags = As = 0, Ay = Ay = Aos = Agg = 0,
Ao1 = Aoz = Aog = Ao7 = Ao = 410 = 2. The intensities of message service y; equal:
== p=12, =1, us=32, po=4, p;=13, =13, py=7, p,=8. Let
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the probabilities pg,, with which the positive message is sent to QS S, equal pg, =
= P43 = Po6 = P01 = Poo = Poro=1/6. Py = pga= Pgs = Pog =0, and similar prob-
abilities of negative messages equal py,=1/22, py;=1/11, pys=3/22, py; =1/11,
Poo=3/11, poio=4/11, Py = Pos= Pos = Pos = Pos = 0. Probabilities p,/ equal

respectively: pi, = Py = p3s = Piio = Pss = P110= Ps1= Pos = Pio1 = 1> Pgs=Pso=1/2,
others are zero. With probability p., = p;oo =1/2 message outgoing from network
to an external environment. Expression (7) in this case takes the form:
ay(t) =exp{— 49t} = e *".

For example, we need to find the probability of the state P(2,2,...,2,¢). It is the
coefficient of z,z,-...-z, in the expansion of ¥,(z,f) in multiple series (8), so the
degrees at z; must satisfy the relation o; +/,—q,— 1+ R—u,-U =2, i=1,n, this
implies that

a+l+Zr Zu q;+1 +u, a+l+Zr —Zu

]:tl ]:tz

n n JR—
lL+q +r+u =a,.+2l,.+2r1-—2u1-—2, i=ln,
J=1 J=1

n

S+g+ +u,.)=§”“(a,. +2L)+n(R-U -2).

i=l1 i=1

Then from (8) obtain that

n
® ® ® > (@i +21; )J+n(R-U=-2)

P(2.2,...2,0)= —49’2 ZZ DI irﬂ x

=0 1[,=0n=0 r,=0u;=0 u,=0

+ +/+Zr Zu r;
20 pgll(#lp10+ﬂ’0p01)a ]1] =1 ’ I+ p;—

n J# _]¢I

X
1 =
3
VR
E l:
=
=
S~—
S
Il
—_
S

n n
Lo, +L+Y =Y u, =2 !
=1 =1

J#I J#i

Figure 1 shows a graph of the probability for different 7.
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Fig. 1. The chart of the probability of the state P (2, 2, ..., 2, t)
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