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Abstract. In the paper certain examples of applications of the matrix inverses for generat-
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Introduction  

The first part of our discussion concerns the linear mappings defined on the  

finite-dimensional space of solutions of the following system of differential equa-

tions 

 ��
���� = ��,��� + ⋯ + ��,������ = ��,��� + ⋯ + ��,���

⋮��� = ��,��� + ⋯ + ��,��� .

 (1) 

Suppose that functions ��,��, … ,�� form the solution of the above system of 

equations and matrix � = ���,�	�×�
	of system (1) is nonsingular. Let us consider 

the linear mapping � of the linear space of solutions ���,��, … ,��
� of system (1) 
onto itself defined in the following way: 

� ���⋮��� = ����⋮���� = ���,��� + ⋯ + ��,���
⋮��,��� + ⋯ + ��,���� = ���,� … ��,�

⋮ ⋮ ⋮��,� … ��,�

� ���⋮��� = ����⋮���. (2) 
Matrix �	is nonsingular, so there exists its inverse ���. In particular, the follow-

ing equality occurs: 

 ����� ���
⋮��

�� = ���� ���
⋮��

�. (3) 
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Therefore, if ��� ���
⋮��

� = ���
⋮��

�, then functions ��  are the primitive functions 

of ��(� = 1,2, … ,�). 
The current article is inspired by Swartz’s paper [1] where the author gives 

some simple examples of using this procedure, among others, for generating the  

integrals of functions ℎ� = e	
sin��, ℎ� = �	
 cos��, for which he obtained the 
formula (the integration constants are omitted and this rule will oblige hencefor-

ward): 

 ��ℎ����ℎ���� = �� −�� � �  ℎ�
ℎ�

! =
���

	��
�
"� #�� �� − � $%# ��� #�� �� + � $%# ��&. (4) 

1. Generalization of Swartz’s example 

Let us start from the generalization of the example mentioned above. Let us take 

the functions 

 
����
 = cosh�� sin�� , ����
 = cosh�� cos�� ,����
 = sinh�� cos�� , ����
 = sinh�� sin�� .

 (5) 

Note that the differentiation operator for these functions is of the form 

 �'��������

( = )*
��

���
���
���
�+, = - 0 � 0 �

−� 0 � 0
0 � 0 −�� 0 � 0

.'��������

(. (6) 

If	�� ≠ 0, then the inverse of matrix of operator � has the form 
 ��� =

�
	��
�

-0 −� 0 �� 0 � 0
0 � 0 �� 0 −� 0

.. (7) 

Now we can easily integrate functions ��, e.g. 

/����
�� =
−�����
 + �����
�� + �� . 
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2. Integrals of ���� � for odd � 

Consider the second derivatives of functions ���
 = sin� � ,� ≥ 2. We have 

 �sin� �
�� = �� sin��� � cos�
� = ��� − 1
 sin��� � − �� sin� �. (8) 

Of course for � = 1 there is �sin �
�� = 	− 	sin�. Thus we can write the second 
derivative operator for the odd powers of function sin�, from 1 to odd 0, in the 
following matrix form: 

								
�� ' sin�

sin� �
⋮

sin� �( = )
* �sin �
���sin� �
��

⋮1sin� �2��+
, = ' − sin�

6 sin� − 9 sin� �
⋮0�0 − 1
 sin��� � − 0� sin� �( =

= -−1� 0 ⋯ 0 0
3 ∙ 2 −3� ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0�0 − 1
 −0�

.' sin �
sin� �

⋮

sin� �( .

 (9) 

The determinant of the obtained matrix is equal to: det�� = (−1)
���

� (0‼)� ≠ 0,0 ∈ 3. The inverse matrix is of the form 
 ��

�� = ���,�	���
�

×
���

�

, (10) 

where 

 ��,� = ��
� 0, � < 4,

−
�

�������
, � = 4,

−
�����‼

�‼
�

������
������‼
������‼

, � > 4. (11) 

We can deduce that for odd � there occurs (with respect to the linear element): 
 � sin� � ���

	 = −
�����‼

�‼
∑ �

����
(����)‼
(��)‼

sin���� ������ �⁄
��� , (12) 

where � ���
�
	 ��: = ������
 ��
��. For example, we get 

 � sin� � �� = −
�
��

sin � −
�
��

sin� � −
�
��

sin� ��
	 . (13) 

We note that from (12) by differentiating we obtain (see [2, 3]): 

 � sin� � �� = −
�����‼

�‼
cos� ∑ (����)‼

(��)‼
sin�� ������ �⁄

��� . (14) 
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For example, we have � sin� � �� = −
�
��

cos�	(1 +
�
�

sin � +
�
�

sin� �). 

3. The case of the even powers of ��� � 

Consider functions of the form 

 ����
 = sin� � − ���

�
sin��� �, (15) 

for � = 2,4,6, … . Acting on the vector '����
����

⋮����
(, where 0 is even,  with the second 

derivative operator, like it was done in equation (9), we get the following transfor-

mation matrix: 

6� '����
����

⋮����
( = '����
������
��

⋮����
��( =

= - −2� 0 … 0 0
2� ∙ 3 4⁄ −4� … 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 … �0 − 2
��0 − 1
 0⁄ −0�

.'����
����

⋮����
( .

																										(16) 

The above matrix is invertible and its inversion is of the form 

 6�
�� = ���,�	�

�
×
�

�

, (17) 

where                     ��,� = ��
� 0, � < 4,

−
�

�����
, � = 4,

−
�

�����
������‼
������‼

����‼
����‼

, � > 4. (18) 

Therefore for even n we get the formula (exact to the linear element):   

 

� ����
���
	 = −

�����‼
�‼��

∑ ����‼
������‼

"sin�� � −
����
��

sin���� �&� �⁄
���	 = −

�����‼
�‼��

" �‼
�����‼

sin� � − 1 +	 	 +∑ sin�� � � ����‼
������‼

−
������‼
������‼

������
������

�� ���⁄
��� &	 =

�����‼
�‼��

−
�
��

sin� � = −
�
��

sin� � ,

 (19) 
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which implies the following integral identity 

 
� sin� � ���
	 =

�����‼
�‼

"� ���
+ ∑ ����‼

(����)‼
� �⁄
��� � �����
��� &

=
�����‼

�‼
"
�

�
− ∑ ����‼

(����)‼(��)�
� �⁄
��� sin�� �& .

 (20) 

Hence, by differentiating we get (see [2, 3]): 

 � sin� � �� =
�����‼

�‼
"� − �cos�
∑ ������‼

(����)‼
� �⁄
��� sin���� �&. (21) 

For example, we obtain 

 � sin� � �� = 	 ��
��

 � − 	cos� "sin� +
�
�

sin� � +
�
��

sin� �&!. (22) 

4. Integral of ���� � 

Let 8 be the linear space of sequences 9����
:���
�  of differentiable functions ��: (�,�) → ;. Let <:8 → 8 be a linear operator satisfying equation 

 ' �tan �
��tan� �
��tan� �
�
⋮

( = <' 1

tan �
tan� �

⋮

(. (23) 

If <	is represented by infinite matrix �, then from (23) matrix � has the form 

 � = -1 0 1 0 0 ⋮
0 2 0 2 0 ⋮
0 0 3 0 3 ⋮

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

.. (24) 

It is easy to show that 

 ��� =

=>>
>?1 0 −

�
�

0 0 ⋮

0
�
�

0 −
�
�

0 ⋮

0 0
�
�

0 −
�
�

⋮

⋯ ⋯ ⋯ ⋯ ⋯ ⋯@AA
AB
. (25) 

However, matrix ��� does not represent the inverse operator <��, since the fol-

lowing relations hold 
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 ' �tan �
��tan� �
��tan� �
�
⋮

( = -1 0 0 0 −1 0 0 0 ⋮
0 1 0 0 0 −1 0 0 ⋮
0 0 1 0 0 0 −1 0 ⋮

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

.' 1

tan �
tan� �

⋮

(, (26) 
resulting from the formula 

 
�
�


" �
���

tan��� � −
�

���
tan��� �& = tan� � − tan��� �. (27) 

Moreover, we get from this, after summing over powers in the interval �− �
�

,
�
�
� and 

by uniform convergence (see [4]), that 

 tan� � =
�
�


∑ " �
������

tan������ � −
�

������
tan������ �&�

��� , (28) 

or equivalently 

 
� tan�C�C

� = ∑ " �

������
tan������ � −

�
������

tan������ �&�
���	 = ∑ �����

������
�
��� tan������ � ,

 (29) 

for every � ∈ �− �
�

,
�
�
� and � = 0,1,2, … . 

From formula (28) we also get the matrix form D�<
 of operator <��, i.e. the 

inverse operator of operator < (under assumption of its existence): 

 D�<
 =

=>>
>>>
>? 1 0 0 0 0 ⋯

0
�
�

0 0 0 ⋯

−
�
�

0
�
�

0 0 ⋯

0 −
�
�

0
�
�

0 ⋯

�
�

0 −
�
�

0
�
�

⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ @AA
AAA
AB
. (30) 

Formula (29) is our main analytic result in this section. Why do we think so?  

Because, as we show now, this formula is a generalization of the classical  

MacLaurin’s formulae for ln(� + 1), i.e. 

 ln�� + 1
 = � −

�

�
+


	

�
−





�
+ ⋯, (31) 

for −1 < � ≤ 1, found independently by Nicolaus Mercator and Saint-Vincent 

(see sections 10-9 and 10-10 in [5] and page 387 in [6]), and for arctan�, i.e. 
 arctan� = � −


	

�
+


�

�
− ⋯, (32) 

for −1 < � ≤ 1,	which is known as the Gregory series. 
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This connection should not be surprising because of the known complex rela-

tion (see [7]): 

 arctan E = 	 �
�

ln "���
���

&, (33) 

where E �⁄ ∈ (−∞, −1] ∪ [1, ∞) and where the principal branch of the loga-
rithm is under consideration. On the cuts we have 

 arctan(�C) = ±
�
�

+
�
�

ln "���
���

&, (34) 

for C ∈ (−∞, −1) ∪ (1, ∞) and where the upper/lower sign corresponds to the 
right/left side of the set determining C. More precisely, the connection between the 
arctan function and log function is obvious and the section concerns the real and 

imaginary parts of  arctan E, since we have 
 arctan E =

�
�

arctan " �

��
����

& +
�
�
� ln "
��������


��������
&, (35) 

where E = � + �C, |E| < 1. First, from equation  (29) for � = 1 we get 

 − ln cos� = ∑ �����

������
�
��� tan�(���) � (36) 

or 

 ln cos1arctan√�2 =
�
�
∑ ��
��

�
�
��� , (37) 

which by (31) implies the well known identity (since cosH =
�

√�� !"�#
 for H ∈ "−

�
�

,
�
�
&): 

 ln cos1arctan√�2 = −
�
�

ln�� + 1
, (38) 

i.e. 

 √� + 1 cos�arctan �
 ≡ 1, (39) 

for every � ∈ I0,1J. 
But this formula holds for every � ≥ 0 since cosH =

�

√�� !"�#
 for every H ∈ "−

�
�

,
�
�
&. In other words, formula (37) is equivalent to (31). For � = 0 from 

(29) we get 

 
!$% !"




= ∑ &�
�'

�

����
�
��� , (40) 
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which implies (32). Hence, for � = 1 we obtain  

 
�
�

= 1 −
�
�

+
�
�

−
�
(

+ ⋯ (41) 

That is the classical Gregory-Leibniz-Nilakantha’s formula (see [8]). Generaliza-

tions of the Gregory power series (32) are discussed in papers [9] and [10]. 

As seen from equation (29), the values of integrals � tan� � ���




�  for � ≥ 2 are 

the translations of numbers � tan � ��	�




� or  � ���




� , depending on parity of �. For 
even � we have  
 � tan� � �� = 	 � ���




� − 	∑ (��)�

����
(���) �⁄
���

�




� =
�
�

− 	∑ (��)�

����
(���) �⁄
��� , (42) 

whereas for odd � we get 
 � tan� � �� = 	 � tan � ���




� − 	∑ (��)�

��
(���) �⁄
���

�




� =
�
�
"ln 2 − 	∑ (��)�

��
(���) �⁄
��� &.(43) 

5. Final remark 

Some other applications of the matrix obtained by n-times differentiation of 

product functions and composition functions are discussed in paper [11]. In turn, in 

paper [12] the technique of the inverse matrix was used for calculating the integral � sec���� �	��, similarly as in the present study. The obtained formulae were used 
there for generating the trigonometric identities. 
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