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Abstract. The presented work is focused on the basis of mathematical and numerical
descriptions of the binary alloy solidification problem. The mathematical formulation is
based on the so-called substitute thermal capacity, which implies a change in the specific
heat of solidifying material. In the literature one can find many ways to define this parame-
ter. Five models, differing in the description of the substitute thermal capacity as well as the
numerical model using the finite element method (FEM) are considered.
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Introduction

Solidifying alloy is a complex system of related physical processes taking place
in the same time from nano- to macroscale. The formation process of the casting
can be divided into four main phases:

e The pouring phase when the molten material is introduced into the mold. The
phase is accompanied by intense mixing occurring mainly as a result of forced
convection.

e Cooling in the liquid state phase when the forced convection of the liquid grad-
ually disappears giving way to movement caused by the phenomenon of natural
convection, the intensity of which is determined by the degree of change in den-
sity of the material caused by changes in temperature.

o The solidification phase, which is characterized by solid phase growth. The pro-
cess of liquid-solid phase transformation is egzoenergetic, accompanied by
release of heat to the surrounding area.

e Cooling in the solid state phase during which the temperature of the casting is
lowered to a value which allows removing it from the mold and carry out the
final treatment.

The most important stage in the formation of casting is the solidification phase
since it determines the structure and quality of the final product. Numerical model-
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ing of this process has been a widely discussed problem for many years in the liter-
ature. The key task of the creator of the numerical model is an appropriate descrip-
tion of the process of the heat emission and transport in the solidifying area. In the
case of binary alloys so-called models with substitute thermal capacity are often
used [1-4]. The models based on the enthalpy [5, 6] are very popular either.

1. Mathematical model

The binary alloy solidification problem in the two-dimensional region is con-
sidered. Solid phase appears on the cooled boundary when the temperature drops
below the liquidus temperature 7;, and it coexists with the liquid phase until the
temperature reaches the solidus temperature 7. Participation of the solid phase is
a dimensionless parameter f; from the interval [0, 1]. There are three zones in the
analyzed region, where Qg contains solid, €; is filled with liquid while Qg.; is
a mixture of phases. The boundaries between them coincide with solidus and
liquidus isotherms (Fig. 1).

Fig. 1. Subregions in the considered problem

The basis of the mathematical description of the problem is the equation of
energy (1), where the classical heat diffusion equation is supplemented by a source
term which describes heat emission during solidification:
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where T [K] denotes temperature, c,, [J/(kgK)] is averaged specific heat, p,, [kg/m’]

- averaged density, 4, [W/(mK)] - averaged coefficient of thermal conductivity,

L [J/kg] - latent heat of solidification, ¢ [s] - time, s - index referring to solid.
Averaging of material parameters is carried out using the parameter f;:
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Participation of the solid phase is a function of the temperature and indirectly of
time f;= f(7), therefore equation (1) can be written in the following form:
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By introducing simplification through the adoption of solid density p, equal to
the average density of the mushy zone p,, substitute thermal capacity is obtained:

df,
c,=c, —L—= 5
o = 5 (5)
Equation (4) can then be rewritten in the form shown below
i(ﬂ“m aTj + i ﬂ‘m or = meL’ff o (6)
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Equation (6) shall be complemented by the appropriate boundary and initial
conditions:
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where T}, [K] is known temperature on the boundary I'y, g, [W/m’] - known heat
flux through the boundary I',, 8T/dn - directional derivative of temperature, n -

vector normal to the boundary ', a [W/(m’K)] - convective heat transfer coeffi-
cient, T, [K] - ambient temperature, 7 [K] - initial temperature.

Equation (6) with the boundary conditions (7)-(9) and the initial condition (10)
are the basis of the mathematical model of the solidification problem. There are
several methods for calculating c.7) [1, 3]. Assuming a linear distribution f(7) in
the temperature range [7s, 7], a constant value of substitute thermal capacity is
obtained (Fig. 2a):

an
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Fig. 2. Distribution of ¢4 for hypothesis 1-3

Assuming a linear distribution c.; (Fig. 2b) the following expression is used:

o (T)=c, +(cna — ;) (12)

where the parameter ¢, can be determined from the following relationship [1]:
1
E(TL_TSXCmaX-FCS):cm(TL_TS)+L (13)

Distribution of ¢ can also be described using the curve of degree p (Fig. 2c)
where p is usually accepted in the range of 5-7 [1]:

P
ceff(T)zc‘s,+(p+1)(cm+ L —cs)[T_TSj (14)

TL - rﬂ' TL - TS
In addition to this one can find descriptions of c.; based on the phase equilibri-
um diagram. Borisow (15) and Samojlowicz (16) models are examples of such an

approach [1, 7]:
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(16)

Cg{f (T) =Cp —mymg

where £ is the coefficient of phase separation, 7, [K] - melting temperature of pure
iron, 7, [K] - liquidus temperature at a given concentration zo, m;, [-] - the slope of
the liquidus line, mg [-] - the slope of the solidus line.
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2. Numerical scheme

Starting from the criterion of the method of weighted residuals [8] equation (6)
is multiplied by the weighting function w and integrated over the region
Q=Q, U0, UQ,,:

o(, or\ of, or or
| {ax(ﬂ . j+5[zmgj—pmc%5}d§z_o (17)

Q

Further the weak form of (6) can be written as the following sum of integral
terms
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where ¢, is heat flux normal to the external boundary I'.

Using Galerkin formulation [8] wi(x, y) = N(x,y) is adopted, where N, are the
shape functions of the finite element. This assumption leads to the local energy
equation in the following form:
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Integral terms appearing in equation (19) can be replaced by the corresponding
elements of the following matrices:

K =4 | oN, N, 9N N (20)
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where K is local heat conductivity matrix, M - heat capacity matrix,
B" - right-hand side vector.

Using equations (20)-(22) the local FEM equation is written in the following
form:

KT+ M7 =B (23)
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Derivative of the temperature with respect to time is approximated by the
scheme shown below

. T/t o1/ . .
T=—— At=t"" =t/ (24)
At

where f'is the level of time, Az [s] - time step.

Using above scheme in equation (23) and aggregating over entire mesh the
global equation is obtained

K+—-M [T/ = B+ M1/ (25)
At At
This equation results from the Euler's backward time discretization scheme [8].

Conclusions

The presented mathematical and numerical models of the binary alloy solidifi-
cation process are the basis for creating a solver which makes it possible to out
numerical simulations of solidification of steel.
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