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Abstract. We consider a 
2

M /G/1/m
θ

 queueing system with arrival of customer batches, 

which uses a threshold control mechanism of the service time and arrival rate. The system 

receives two independent flows of customers, one of which is blocked in an overload mode 

(under the condition that the number of customers in the system exceeds a given threshold 

value h ). Full blocking of the input flow is carried out from the moment when the queue 

length reaches the number m  until the beginning of the service of the first customer, for 

which the number of customers in the system does not exceed .h  From the beginning of the 

service of the first customer during the excess of number of customers in the system of h  

until the completion of full blocking the time of service of customer is distributed under the 

law of �( )F x  (an increased service rate is used). Rest of the time the system applies the 

normal service rate with the distribution function ( )F x  of service time. Laplace transforms 

for the distributions of the number of customers in the system during the busy period and 

for the distribution function of the busy period are found. The average duration of the busy 

period is obtained. Formulas for the stationary distribution of the number of customers in 

the system, for the probability of service and for the stationary characteristics of the system 

are established. The obtained results are verified with the help of a simulation model 

constructed with the assistance of GPSS World tools. 

 

Keywords: queueing system, flows of two types of customers, batch arrival of customers, 

threshold control, busy period, distribution of the number of customers  

Introduction  

For the purpose of preventing overloads in the information and 

telecommunication systems a control both of an input flow and its parameters, and 

service rate is used. According to [1-3], the queuing systems with threshold control 

may be adequate models for evaluating the quality of functioning of SIP servers 

under overloads.  

A large number of publications, in particular articles [4-8], are devoted to the 

study of queueing systems with threshold strategies of functioning. Most studies 

examined a single-channel system with an arbitrary distribution of the service time.  
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In this paper we consider a 
2

M /G/1/m
θ  queuing system with the independent 

flows of two types of customers. In this system the control is applied both to the 

parameters of these flows and to the service rate.  

Constructions of queueing systems which are closest to the considered system 

are discussed in [4, 5, 8]. System with flows of two types of customers is also 

studied in [4, 8], and in [5] a similar mechanism of full blocking of the flow of 

customers is used.  

In contrast to [4], in the studied system a batch arrival of customers is provided, 

the switching of the service rate is applied and another threshold control 

mechanism is used. In contrast to this article, the mode of partial blocking of the 

input flow is not considered in paper [5], and in [8] a hysteretic control mechanism 

of the input flow intensity for a multi-channel system X

2
M /M/n  is applied.  

1. Description of the system 

Let us consider a 
2

M /G/1/m
θ  queueing system that receives independent flows 

of two types of customer batches and that is formally described as follows. Let 

sequences of random variables 
1

{ }
n
α , 

2
{ }

n
α , { }

n
θ , { }

n
β , �{ }

n
β  ( 1)n ≥  be 

specified, where 
in
α  is the time between arrivals of the ( 1)n − -th and n-th batches 

of the flow number i  ( =1,2i ), 
n
θ  is the number of customers in the n-th batch, 

and 
n
β  and �

n
β  are the service time of the n-th customer in the normal service 

mode and in the mode of full blocking respectively. All these random variables are 

supposed to be totally independent and { < }=1 i

in

x

x e

λ

α

−

−P  ( > 0; =1,2)
i

iλ ; 

{ = }=
n k

k aθP  ( 1)k ≥ , 
=1

=1;
k

k

a

∞

∑  { < }= ( )
n

x F xβP  ( 0)x ≥ , (0) = 0F  and 

� �{ < }= ( )
n

x F xβP  ( 0)x ≥ , �(0) = 0F . If 
1

{ =1}= =1,
n

aθP  then customers arrive 

in the system one by one (this is the ordinary flow).  

Thus, the time intervals between the moments of arrival of customers batches of 

the flow number i  are independent random variables distributed exponentially 

with parameter 
i
λ  ( =1,2i ). In the total flow being a superposition of the first and 

second type of flows, the time intervals between the moments of arrival of 

customers batches have the exponential distribution with parameter 
1 2

=λ λ λ+    

[9, p. 83].  

Customers are served one by one, a served customer leaves the system, and the 

server immediately starts serving a customer from the queue, if one exists, or waits 

for the arrival of the next customer batch. The first-in first-out (FIFO) service 

discipline is used. A queue inside one customer batch can be arbitrarily organized, 
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since the characteristics under study are independent of the way in which the queue 

is organized. 

Let m  be the maximum number of customers that can simultaneously be in the 

queue. Thus, if a batch of 
n
θ  customers arrives in the system containing 

[0, 1]k m∈ +  customers, then, only min{ , 1 }
n
m kθ + −  of these customers join the 

queue, the remaining ones being lost.  

There are three modes of control of the input flow intensity: normal mode, 

partial blocking mode and full blocking mode. In the normal mode customers of 

both types are accepted for service and ( )F x  is the distribution function of the 

service time of each customer. In the partial blocking mode the acceptance of 

customers of the second flow stops and customers of the first flow are accepted 

only. In the full blocking mode accept of all customers stops. In the partial and full 

blocking modes the service time is distributed according to the law of �( ).F x  

Let us describe the mechanism of switching modes. Let h  be a given number 

( 2 2h m≤ ≤ − ). Denote the number of customers in the system at time t  as ( )tξ  

and let 
b
t  be a moment of beginning of a customer service. If ( ) ,

b
t hξ ≤  then 

during the service of this customer the normal mode is applied. Switching to the 

partial blocking mode takes place at the moment 
b
t  of service beginning the first 

customer for which the inequalities 1 ( )  
b

h t mξ+ ≤ ≤  hold. The full blocking mode 

is activated in the moment of reaching of the queue length of m  and continues 

until the moment 
b
t  of the service beginning the customer for which the equality 

( )
b
t hξ =  holds. Switching to the service mode with the function of the service 

time distribution of �( )F x  is carried out not at the start of the the partial blocking 

mode, but at the beginning of the first customer service during the term of this 

mode.  

The assumptions 2 2h m≤ ≤ −  are introduced only in order not to consider 

cases for which the formulas are different from those shown here, and in no way 

detract from the generality of the obtained results.  

To study the probability characteristics of the described queueing system we use 

an approach based on the potential method proposed by V. Korolyuk [10]. This 

approach was previously used by us, in particular in the works [5, 6, 11].  

2. Basic notations and auxiliary results 

Denote by 
n
P  the conditional probability, provided that at the initial time the 

number of customer in the queueing system is 0,n ≥  and by E  (P) the conditional 

expectation (the conditional probability) if the system starts to work at the time of 

arrival of the first batch of customers. We introduce the following notations: 

( , )xη λ  is the number of customers arriving in the system during the time interval 



Y. Zhernovyi, B. Kopytko 152

[0; )x  under the condition that the time intervals between the moments of arrival of 

the batch of customers is exponentially distributed with parameter λ ; k

i
a
∗  is the  

k-fold convolution of the sequence 
i
a ; ( , ) = (1 ( ));a s z s zλ α+ −  

1
( , ) =a s z s +  

1
(1 ( ))zλ α+ − . Let  

� �

� �

� �

0 0

=10 0

=0

= = =

( ) = ( ), ( ) = ( );

= ( ) < ; = ( ) < ; = < ;

( ) =1 ( ), ( ) = 1 ( ); ( ) = ;

= , ( ) = ( ), ( ) = ( ).

sx sx

a k

k

k

k

k

n k n k n k

k n k n k n

f s e dF x f s e dF x

M xdF x M xdF x e ka

F x F x F x F x z z a

a a p s p s q s q s

∞ ∞

− −

∞ ∞
∞

∞

∞ ∞ ∞

∞ ∞ ∞

− − α

∫ ∫

∑∫ ∫

∑

∑ ∑ ∑

 

We specify the sequences ( ),
i
p s  ( )

i
p sɶ  (R 0e s ≥ ) as  

   
�

�

�

�1

1
* ( )

1

=00 0

1

0

1
(* 1

1

=0 0

1 1 ( )
( ) { ( , ) = 1} ( ) = ( );

( ) ( ) !

1
( ) { ( , ) = 1} ( )

( )

( )1 )
( ), 1.

!( )

ki

sx k s x

i i

k

sx

i

ki

k

i

k

x
p s e x i dF x a e dF x

f s f s k

p s e x i dF x
f s

xs x
a e dF x i

kf s

λ

λ

λ
η λ

η λ

λ

∞ ∞+

− − +

+

∞

−

∞+

−

+

= +

= + =

+
= ≥ −

∑∫ ∫

∫

∑ ∫

P

Pɶ  (1) 

The sequences of functions ( )
k

R s  and � ( )kR s  ( 1k ≥ ) are defined by the 

equalities  

�

�

ɶ

=1 =1 1

( ) = , | |< ( ); ( ) = , | |< ( ),
( ( , )) ( ( , ))

k k
k

k

k k

z z
z R s z s z R s z s

f a s z z f a s z z
ν ν

∞ ∞

− −

∑ ∑ (2) 

where ( )sν  and ( )sνɶ  are unique roots of the equations ( ( , )) =f a s z z  and 

�
1

( ( , )) = f a s z z  respectively on the interval [0; 1].  

The sequences ( ),
i
q s  ( )

i
q sɶ ( 0i ≥ ) are given in the form 

 

� �1

* ( )

=00 0

(* 1
1

=00 0

( )
( ) = { ( , ) = } ( ) = ( ) ;

!

( ))
( ) = { ( , ) = } ( ) = ( ) .

!

ki

sx k s x

i i

k

ki

sx k

i i

k

x
q s e x i F x dx a e F x dx

k

xs x
q s e x i F x dx a e F x dx

k

λ

λ

λ
η λ

λ
η λ

∞ ∞

− − +

∞ ∞

−− +

∑∫ ∫

∑∫ ∫

P

Pɶ

 (3) 
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Introducing the notations  

 
� �

0 0 0

0 0 0

= lim ( ), = lim ( ), = lim ( ),

= lim ( ), = lim ( ), = lim ( ),

i i i i i i
s s s

i i
i i i i

s s s

p p s R R s q q s

p p s R R s q q s

→+ →+ →+

→+ →+ →+

ɶ ɶ ɶ ɶ

  (4) 

using (1)-(4) we obtain the relations:  

 

�

�

�

� � �

1 1

* * 11

1 1

=0 =00 0

1

1 1

=01 1

1

1 1

=011

1

0

=1

( )( )
= ( ), = ( ), 1;

! !

1 1
= , = , 1;

1 1
= , = , 1;

1 ( )
= , =

kki i

k x k

i i i i

k k

k

k k i k i

i

k

k k k i
i

i

k

k

k i k i

i

xx x
p a e dF x p a e dF x i

k k

R R R p R k
p p

R R R p R k
pp

pf
q q a q

λλ λλ

λ

λ

∞ ∞+ +

−−

+ +

−

+ −

− −

−

+ −

−−

−

−

≥ −

 
− ≥ 

 

 
− ≥ 

 

−
−

∑ ∑∫ ∫

∑

∑

∑

ɶ

ɶ
ɶ

�
11

0

=11 1

, 1;

1 ( )
= , = , 1.

k

k

k i k i

i

k

pf
q q a q k

λ

λ

λ λ

−

−

≥

−
− ≥∑

ɶ
ɶ ɶ ɶ

  (5) 

3. Distribution of the number of customers in the system during  

the busy period 

Let ( ) = inf{ 0 : ( ) = 0}m t tτ ξ≥  denote the first busy period for the considered 

system and  

 

0

( , ) = { ( ) = , ( ) > }, 1 , 1,

( , ) = ( , ) , Re > 0.

n n

st

n n

t k t k m t n k m

s k e t k dt s

ϕ ξ τ

ϕ

∞

−

≤ ≤ +

Φ ∫

P

 

We introduce the notations:  

 �
�

�
�

2

2

1

( , ) = ( , ) ( ) ( ) { = 1} ( ),

( , ) = ( , ) ( ) ( ) { = 1} ( ),

1 ( )
( , ) = { 1 } ( ) ( ) ;

1 ( )
( , ) = { 1 } ( ) .

n m n k n m n

n m n k n m n

m k

m k

g s k g s k p s q s I k m q s

g s k g s k p s q s I k m q s

f s
g s k I h k m f s f s

s

f s
g s k I h k m f s

s

− − − +

− − − +

−

+ −

+ + +

+ + +

−
+ ≤ ≤

−
+ ≤ ≤

ɶ ɶ ɶ ɶ ɶ

ɶ

 



Y. Zhernovyi, B. Kopytko 154

Here { }I A  is the indicator of a random event A ; it equals 1 or 0 depending on 

whether or not the event A  occurs. Let also  

 � � �
1

1

= 1 =1

( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( );
m n m n i

m h m h

jn h n m n i m n i j

i h n j

L s p s f s p s f s p s R s p s
− − − −

− + −

− − − − −

+ −

+ − ∑ ∑ ɶ  

 

� �(

� �

�

1
1

=1 = 1

=1 =1

1

=1 =1

1

= 1

( , ) = ( ) ( , ) ( ) ( ) ( ) ( )

( ) ( , ) ( ) ( , ) ;

( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( )

(

h m i

m h m i jh i i j

i j h i

m i jm h

l lh l i j l

l l

h h

m hh i i i

i i

m i

j

j h i

s k R s g s k f s p s R s R s

R s g s k R s g s k

s R s f s R s L s f s R s R s

p s

− −
−

− − −

+ −

− −−

+ + +

−

−

− −

+ −


∆ + ×




× − 



∆ − − ×

×

∑ ∑

∑ ∑

∑ ∑

∑

ɶ ɶ

� � �
1

=1

) ( ) 1 ( ) ( ) ( ) .
m h

m h

m i j i m h i

i

R s f s R s p s
−

+ −

− −
− −

 
+ 

 
∑ ɶ

 

Theorem 1. For 1 1k m≤ ≤ +  and Re > 0s   

 

�(

�

=10

1

=1 = 1

=1

0

{ ( ) = , ( ) > } = ( ) ( ) ( ) ( ) ( , )

( ) ( ) ( ) ( , ) ( )

( ) ( , ) ( , ) , 1 1;

{

h n
st

n h n i n i h

i

h n m n i

m n i ji j m

i j h n i

m n i j

l n i j l n i

l

st

n

e t k m t dt R s f s R s L s s k

R s f s p s s k R s

R s g s k g s k n h

e

ξ τ

ξ

∞ −

−

− +

− − − −

− − −

+ − −

− − −

+ + + +

∞

−

 
− Φ − 

 


− Φ −




− + ≤ ≤ −

 

∑∫

∑ ∑

∑

∫

P

P

ɶ

� �

� �

1

=1 =1

( ) = , ( ) > } = ( ) ( , ) ( ) ( , )

( ) ( ) ( ) ( , ), 1 1,

m h

m n m h

m n m n

i im n i n i

i i

t k m t dt R s s k f s s k

R s p s R s g s k h n m

τ
+ −

−

− −

− − +

Φ − Φ ×

× − + ≤ ≤ −∑ ∑ɶ ɶ

 (6) 

where  

 

�

�((
� �

1

=1 =1

( , ) 1
( , ) = , ( , ) = 1 ( )

( ) ( )

( ) ( ) ( , ) ( ) ( , ) .

m h
h

h m

m h

m h m h

i i
m h i h h i

i i

s k
s k s k f s

s R s

R s p s s k R s g s k

+ −

−

− −

− − +

∆
Φ Φ + ×

∆


× Φ + 

 
∑ ∑ɶ ɶ

  (7) 
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Proof. It is obvious that 
0
( , ) = 0.t kϕ  The total probability formula implies  

�

� �

1

=0 0

=10 0

1

=1 =10

( , ) = { ( , ) = } ( , ) ( )

{ ( , ) 1 } ( , ) ( )

{ 1 } { ( , )) 1 } < ( )

{ ( , )) = } { = 1}

tm n

n n i

i

t t x m h

i h

i

t m k m k

i i

i i

t k x i t x k dF x

x m n dv t x v k dF x

I h k m x m n t x dF x

t k n I k m

ϕ η λ ϕ

η λ β ϕ

η λ β β

η λ

−

+ −

− −

− + −

− +

 
+ ≥ + − ∈ − − + 

 

 
+ + ≤ ≤ ≥ + − − ≤ + 

 

+ − + +

∑∫

∑∫ ∫

∑ ∑∫

P

P P

P P

P( ){ ( , ) 2 } ( ), 1 ;t m n F t n hη λ ≥ + − ≤ ≤P

 

 �
1 1

=0 0

( , ) = { ( , ) = } ( , ) ( )

tm n

n n i

i

t k x i t x k dF xϕ η λ ϕ
−

+ −
− +∑∫P   (8) 

 

� �

� � �

( )�

1

=10 0

1

1

=1 =10

1 1

{ ( , ) 1 } ( , ) ( )

{ 1 } { ( , ) 1 } < ( )

{ ( , ) = } { = 1} { ( , ) 2 } ( ), 1 .

t t x m h

i h

i

t m k m k

i i

i i

x m n dv t x v k d F x

I h k m x m n t x dF x

t k n I k m t m n F t h n m

η λ β ϕ

η λ β β

η λ η λ

− −

− + −

 
+ ≥ + − ∈ − − + 

 

 
+ + ≤ ≤ ≥ + − − ≤ + 

 

+ − + + ≥ + − + ≤ ≤

∑∫ ∫

∑ ∑∫

P P

P P

P P

 

Passing to the Laplace transform on both sides of equalities (8) and taking into 

account relations (1)-(3), we obtain the system of equations with respect to the 

functions ( , )
n
s kΦ   (1 n m≤ ≤ )  

 
�

1

= 1

( , ) = ( ) ( ) ( , ) ( ) ( ) ( ) ( , )

( , ), 1 ;

m n
m h

n i n i m n h

i

n

s k f s p s s k f s f s p s s k

g s k n h

− −
−

+ −

−

Φ Φ + Φ +

+ ≤ ≤

∑
 (9) 

 

�

�

1

= 1

1

( , ) = ( ) ( ) ( , )

( ) ( ) ( , ) ( , ), 1 ,

m n

n i n i

i

m h

m n h n

s k f s p s s k

f s p s s k g s k h n m

− −

+

−

+ −

−

Φ Φ +

+ Φ + + ≤ ≤

∑ ɶ

ɶ ɶ

 (10) 

and the boundary condition  

 
0
( , ) = 0.s kΦ  (11) 
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Using Lemma 1 of the paper [6], solutions of the system (10) are given by 

 

� � �

�

1

=1

=1

( , ) = ( ) ( , ) ( ) ( , ) ( ) ( )

( ) ( , ), 1.

m n
m h

m n i
n m h m n i

i

m n

i
n i

i

s k R s s k f s s k R s p s

R s g s k h n m

−
+ −

−
− −

−

+

Φ Φ − Φ −

− ≤ ≤ −

∑

∑

ɶ

ɶ

  (12) 

With the help of (12) the system of equations (9) is rewritten as  

� �

1 1

= 1 = 1

=1

( , ) = ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( , ), 1 .

h n m n

n i n i n h i

i i h n

m n i

m n i jm n i j n

j

s k f s p s s k f s L s s k f s p s

s k R s R s g s k g s k n h

− − − −

+

− + −

− −

− −
+ +

Φ Φ + Φ + ×

 
× Φ − + ≤ ≤ 
 

∑ ∑

∑ ɶ

 

We again use Lemma 1 of [6] and deduce that  

 
=1

1

=1 = 1

( , ) = ( ) ( ) ( ) ( ) ( , )

( ) ( ) ( )

h n

n h n i n i h

i

h n m n i

i j

i j h n i

s k R s f s R s L s s k

R s f s p s

−

− +

− − − −

+ − −

 
Φ − Φ − 

 


− ×



∑

∑ ∑

  (13) 

� �

=1

( , ) ( ) ( ) ( , ) ( , ) , 0 1.
m n i j

m n i j lm n i j l n i

l

s k R s R s g s k g s k n h
− − −

− − −
+ + + +

 
× Φ − + ≤ ≤ − 
  

∑ ɶ  

Considering the equality (12) with =n h  and (13) with = 0,n  and using the 

condition (11), we obtain the system of two linear equations with respect to the 

functions ( , )
h
s kΦ  and ( , ) :

m
s kΦ   

� � � �

�

1

=1 =1

1

=1 =1 = 1

1

=1 = 1

1 ( ) ( ) ( ) ( , ) ( ) ( , ) = ( ) ( , );

( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( )

= ( ) ( )

m h m h
m h

i m h im h i h m h i

i i

h h m i

m i jh i i h m i j

i i j h i

h m

i

i j h i

f s R s p s s k R s s k R s g s k

R s f s R s L s s k f s s k R s p s R s

f s R s

− −
+ −

−
− − +

− −

− −

+ −

−

+ −

 
+ Φ − Φ − 

 

 
− Φ − Φ = 

 

−

∑ ∑

∑ ∑ ∑

∑

ɶ ɶ

�

=1 =1

( ) ( ) ( , ) ( ) ( , ).
m i ji h

lj i j l i i

l i

p s R s g s k R s g s k
− −−

+ +
+∑ ∑ ∑ɶ

 

The solutions of this system are defined in form (7). Equalities (6) follow from the 

relations (12) and (13). The theorem is proved.  



The system 
θ

2
M G 1 m/ / /  with threshold control of the arrival rate and service time 157

4. Busy period and stationary distribution 

If the system starts functioning at the moment when the first batch of customers 

arrives, then  

 
1 1

=10

{ ( ) = , ( ) > } = ( , ) ( , ).
m

st

n n m m

n

e t k m t dt a s k a s kξ τ

∞

−

+ +
Φ + Φ∑∫ P    (14) 

The total probability formula implies  

 

� �

� � � �

1

=10 0

1

=1 =10

( , ) = ( , ) ( )

{ 1 } < ( ) { = 1} ( ).

t t x m h

im h

i

t m k m k

i i

i i

t k dv t x v k d F x

I h k m t x dF x I k m F t

ϕ β ϕ

β β

− −

+

− + −

 
∈ − − + 

 

 
+ + ≤ ≤ − ≤ + + 

 

∑∫ ∫

∑ ∑∫

P

P

 

The Laplace transform of 
1
( , )

m
t kϕ

+
 is given by 

 � �
�

1 1

1

1 ( )
( , ) = ( ) ( , ) { 1 1} ( ) .

m h m k

m h

f s
s k f s s k I h k m f s

s

− + − +

+

−
Φ Φ + + ≤ ≤ +   (15) 

Using the relations (12), (13) and (15) we rewrite the equation (14) in the form 

 � � �

1

=1 =10

1
1 1

1

= 1 =1

1 1

=1 =1 = 1

{ ( ) = , ( ) > } = ( ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )) ( , )

( ) ( , ) ( )( ( )

h h n
st

n h n i n i h

n i

m m n
m h m h

in m n i m h

n h i

h h n m n i

m n i

n i j h n i

e t k m t dt a R s f s R s L s a

f s a R s p s a f s s k

A s s k a R s f s p

ξ τ

∞ − −

−

− +

− −
+ − + −

− − +

+

− − − − −

+ − −

 
− + − 

 

− + Φ −

− Φ +

∑ ∑∫

∑ ∑

∑ ∑ ∑

P

ɶ

( )
j
s ×

 

 

� �

�
�

1

=1 = 1 =1

1

1

( ) ( , ) ( , )) ( ) ( , )

1 ( )
{ 1 1} ( ) ,

m n i j m m n

l in i j l n i n n i

l n h i

m k

m

R s g s k g s k a R s g s k

f s
a I h k m f s

s

− − − − −

+ + + + +

+

− +

+

× − − +

−
+ + ≤ ≤ +

∑ ∑ ∑ɶ ɶ

  (16) 

where  

 � �
1 1 1

=1 =1 = 1 = 1

( ) = ( ) ( ) ( ) ( ) ( ) .
h h n m n i m

m n i j m nn i j n m

n i j h n i n h

A s f s a R s p s R s a R s a
− − − − − −

− − − −

+ − − +

− −∑ ∑ ∑ ∑  
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To obtain a representation for 
0

{ ( ) > }
st

e m t dtτ

∞

−

∫ P  we sum up equalities (16) for 

k  running from 1 to 1m + . Making sure that 

 

�

�
� �

� �(

�

1

=1

1

=1

1 1
1

=1 =1 = 1

=1

1 ( ) 1 ( )
( ) = ( , ) = ( ) ( ) ;

1 ( ) 1 ( )
( ) = ( , ) = ( ) ( ) ;

( ) = ( , ) = ( ) ( ) ( ) ( ) ( ) ( )

( )

m h
m

n n m n

k

m h
m

n n m n

k

m h m i

m h m i jh h i i j

k i j h i

m h

l

l

f s f s
g s g s k f s p s

s s

f s f s
g s g s k f s p s

s s

s s k R s g s f s p s R s R s

R s

−
+

−

−
+

−

+ − −
−

− − −

+ −

−

− −
+

− −
+


∆ ∆ + ×



×

∑

∑

∑ ∑ ∑

∑

ɶ ɶ ɶ

ɶ �

�

� �

�

1

=1 =1

1
1

=1 =1

=1

( )
( ) ( ) ( ) ; ( ) = ( , ) = ;

( )

1
( ) = ( , ) = 1 ( ) ( ) ( ) ( )

( )

( ) ( ) ,

m i j m
h

lh l i j l h h

l k

m m h
m h

im m m h i h
m hk i

m h

i h i

i

s
g s R s g s s s k

s

s s k f s R s p s s
R s

R s g s

− − +

+ + +

+ −
+ −

− −

−

−

+

 ∆
− Φ Φ

∆

 
Φ Φ + Φ + 

 


+ 



∑ ∑

∑ ∑

∑

ɶ

ɶ

ɶ

 

From (16) we obtain an expression for the Laplace transform of the distribution 

function of the busy period  

 

� � �

1

=1 =10

1
1 1

1

= 1 =1

1 1

=1 =1 = 1

{ ( ) > } = ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

h h n
st

n h n i n i h

n i

m m n
m h m h

in m n i m h

n h i

h h n m n i

m n i j

n i j h n i

e m t dt a R s f s R s L s a

f s a R s p s a f s s

A s s a R s f s p s

τ

∞ − −

−

− +

− −
+ − + −

− − +

+

− − − − −

+ − −

  
− + −  

 


− + Φ −




− Φ + ×



∑ ∑∫

∑ ∑

∑ ∑ ∑

P

ɶ

�

=1

( ) ( ) ( )
m n i j

l n i j l n i

l

R s g s g s
− − −

+ + + +


× − −


∑ ɶ

         (17) 

 �
�

1
1

1

= 1 =1

1 ( )
( ) ( ) .

m h
m m n

i
n n i m

n h i

f s
a R s g s a

s

+ −
− −

+ +

+

−

− +∑ ∑ ɶ  

Passing to the limit in (17) as 0,s→+  we derive the formula for the mean 

duration of a busy period of the studied queueing system. To calculate this limit 

using the sequences defined by (4), (5) and take into account the following limit 

relations: 
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�
�

� � ( )

� �

0 0 0

0 0

1 1 1

0
=1 =1 = 1 = 1

1 ( ) 1 ( )
lim = ; lim = ( 1); lim ( ) =1;

lim ( ) = ( ) ; lim ( ) = 1 ( ) ;

= lim ( ) = .

n

s s s

n m n n m n
s s

h h n m n i m

m n i j m nn i j n m
s

n i j h n i n h

f s f s
M nM n s

s s

g s M m h M p g s M m h p

A A s a R p R a R a

→+ →+ →+

− −
→+ →+

− − − − − −

− − − −

→+
+ − − +

− −
≥ ∆

+ − + −

− −∑ ∑ ∑ ∑

ɶ ɶ  

Therefore we proved the following result.  

 

Theorem 2. The mean duration of the busy period of the queueing system is 

determined in the form  

 

� � � � �

� � � �( )

� �

1 1
1

=1 = 1 =1

1

=1

1 1
1

=1 =1 = 1

1

= 1

 ( ) = ( )

( )

( )

h m i m h

m h m i j li m i j

i j h i l

m i j

m h l m h m i j

l

h h n m n i

m hh n i j n i j m n i

n i j h n i

m

n h

m R M m h M p M R p R R

R R m h R R

C AR a R p C M m h M p

τ

− − − −
−

− − −
−

+ −

− − −

− − − −

− − − − −
−

−
+ + − −

+ − −

−

+

 
+ − + − 




− + − − −



 
− + − − − − 

 

−

∑ ∑ ∑

∑

∑ ∑ ∑

E

�
1

( 1 ) ,
n n m

a C m h Ma
+

+ + −∑

    (18) 

where  

 � � �( )
=1

= ( ) 1 .
m n

i m n
n

i

C M R m h R

−

−

 
+ − − 

 
∑  

Applying the same reasoning as that in the paper [11, p. 169-170] and using the 

key renewal theorem [12, p. 46], we obtain the equalities  

 
0

1

0

lim { ( ) = }= { ( ) = , ( ) } , 1 1;
1 ( )

lim { ( ) = 0}= { ( ) < , ( ) } .
1 ( )

t

t

t k u k m u du k m
m

t m u m u du
m

λ
ξ ξ τ

λ τ

λ
ξ τ τ ξ

λ τ

∞

→∞

∞

→∞

≥ ≤ ≤ +

+

+ ≥

+

∫

∫

P P
E

P P
E

  (19) 

Since 
1 1

{ ( ) < , ( ) } = { ( ) } { ( ) },m u m u m u m uτ τ ξ τ ξ τ+ ≥ + ≥ − ≥P P P  then  

 
1

0

1
{ ( ) < , ( ) } = .m u m u duτ τ ξ

λ

∞

+ ≥∫P    (20) 
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Passing in (16) to the limit as 0s→+  we get  

 

� � �

� � � �

�

1
1

=1 =1 =10

1 1

= 1 =1 = 1 =1

1

{ ( ) = , ( ) > } = ( ) ( )

( ) ( ) ( )

{ 1 1},
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j h n i l n h i

m

t k m t dt k AR R G k a R

p R G k G k a R G k

Ma I h k m

ξ τ δ

∞ − − −
−

− +

− − −− − − − −

+ + + +
+

+ − − +

+

− + ×

 
× − − + 
 

+ + ≤ ≤ +

∑ ∑ ∑∫

∑ ∑ ∑ ∑

P

  (21) 

where  

 

� � � � � �

�

� �

1
1

=1 = 1 =1 =1

2

2
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δ

− −− − −
−

− − − + + +

+ −

− − + −

− − + −

 
+ −  

  

+ + ≤ ≤ + +

+ + ≤ ≤ + +

∑ ∑ ∑ ∑

ɶ ɶ ɶ

 

Introducing the notations: ( ) = lim { ( ) = },
k

t

m t kρ ξ
→∞

P  0 1;k m≤ ≤ +   

 

�

� � � � �( )
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=1 =1

( ) = ( ) = ;
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D k R G k R q M R
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+ − − − −

− −

−+
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+

+ −

∑ ∑ ∑
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Taking into account (19), (20) and equality � �

=1

= 1,
n

i n
n i

i

R p R
−

−∑ ɶ  which follows from 

(5), with the help of (21) we obtain the following statement. 
 

Theorem 3. The stationary distribution of the number of customers in the system is 

given by  

 

0

1

0

=1 =1 =1

1
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( ) = ( ) , 1 ;
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∑
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.
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−
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5. Determination of stationary characteristics 

Using the equality (18), the expression for the mean duration of the busy period 

can be written as ��( ) = ( ) ( ).m M T m MT mτ +E  Then for the mean service time we 

obtain the formula  

 
�

( )
= .

( ) ( )

m
M

T m T m

τ

+

E
 

The formula for the probability of service 
sv
( )mP  we get as a ratio of the mean 

number of served customers by the mean number of arrivals per unit of time  

 
( ) �( ) �( )0 0

sv

1 ( ) ( ) ( ) ( ) ( ) ( )
( ) = = .

( )
a a

m T m T m m T m T m

m
e m e

ρ ρ

λ τ

− + +

P
E

  (23) 

Stationary queue characteristics, namely the mean queue length ( )Q mE  and 

mean waiting time of service ( )w mE , we can find by the formulas  

 
1

=1 sv

( )
( ) = ( ); ( ) = .

( )

m

k

k a

Q m
Q m k m w m

e m
ρ

λ
+∑

E
E E

P
  (24) 



Y. Zhernovyi, B. Kopytko 162

6. Example of calculation of the stationary distribution  

and the characteristics of the system 

Assume that = 9,m  = 5,h  customers can arrive only one by one or two by two 

(
1
= 0.75,a  

2
= 0.25a ), 

1 2
= =1,λ λ  in normal mode the service time is uniformly 

distributed on the interval [1/3;1]  with the mean value = 2 / 3,M  and in partial 

and full blocking modes the service time is uniformly distributed on the interval 

[0; 2/3]  with the mean value � =1/3.M  Then, the mean duration of the busy period 

( )mτE  found by the formula (18) is equal to 118.319. The second row of Table 1 

contains the probabilities ( ),
k
mρ  calculated by formulas (22). For the sake of 

comparison, the same table contains the corresponding probabilities evaluated by 

the GPSS World simulation system [13] for the time value 6
=10t . The values of 

the stationary characteristics, found by formulas (23) and (24) and calculated with 

the help of GPSS World, are shown in Table 2.  
Table 1 

Stationary distributions of the number of customers in the system 
 

Number of customers  (k) 0 1 2 3 4 5 

( )
k
mρ  according to (22) 0.00421 0.01063 0.02426 0.05302 0.11529 0.25042 

( )
k
mρ  (GPSS World) 0.00429 0.01094 0.02447 0.05336 0.11565 0.25041 

Number of customers (k) 6 7 8 9 10 

( )
k
mρ  according to (22) 0.23442 0.16229 0.09027 0.04274 0.01245 

( )
k
mρ  (GPSS World) 0.23403 0.16228 0.08958 0.04240 0.01259 

 

Table 2 

Stationary system characteristics  
 

Characteristic 
sv
( )mP  ( )Q mE  ( )w mE  

Analytical value 0.78721 4.70955 2.39302 

Value according to GPSS World 0.787 4.704 2.391 

Conclusions 

The advantage of the proposed algorithm for calculating the stationary 

characteristics is that the recurrence relations (5), used to define the sequences 

{ },
k
p  { },

k
pɶ  { },

k
q  { },

k
qɶ  { },

k
R  �{ },kR  do not depend explicitly on the volume of 

storage heater m  and the threshold value h  and depend only on the parameters of 

the input flow and the distribution functions ( )F x  and �( )F x  of the service time. 
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Therefore, in case of a change of parameter m  and h  there is no need to  

recalculate the values of these sequences. 
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