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Abstract. We study properties of geodesic foliations on the flat, n-dimensional torus.
Using the isomorphism of the Hodge star, we obtain some facts concerning compact totally
geodesic surfaces (which are the leaves of geodesic foliations). We compute the p-module of
a geodesic foliation. On the basis of these results, we derive a kind of reciprocity formula for
the product of modules of two orthogonal foliations. We relate this product with the number
of intersections of their leaves. We also obtain a formula for a product of modules of a finite
number of geodesic foliations.
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Introduction

We study properties of geodesics of the flat, n-dimensional torus, which helps us
to investigate relations between geodesic foliations on this manifold. The leaves of
such a foliation have identical measures, since they are projections of the parallel
k-dimensional planes of R”. We introduce the notion of a closing k-plane of R”
(which can be treated as an element of the Grassmann algebra), that corresponds to
a compact totally geodesic (ctg) surface, being a leaf of a geodesic foliation. An im-
portant concept that appears in the first section of the paper is a fundamental domain,
which is a parallelepiped in a k-plane that has the same measure as the leaves of the
corresponding geodesic foliation. It is convenient to study ctg surfaces with the aid
of algebraic tools. A simple k-node (that is a specific element of the space Ax(R"))
can be identified with a closing k-plane. Since the Hodge star acting on a multi vector
produces an orthogonal multi vector, we use this concept to obtain interesting facts
concerning ctg surfaces. The main results are: Theorem 17, which actually claims
that a totally geodesic surface orthogonal to a ctg surface (of complementary dimen-
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sion) is a ctg surface as well (it is also compact), and Theorem 29, saying that such
surfaces have identical measures.

The second section concentrates on the p-module of a geodesic foliation. In the
case of the flat torus, there is a simple formula for that quantity (Theorem 34).
One can notice that for the unit torus, it is independent of the exponent p. On the
basis of the results of the previous section, we obtain an interesting relation between
the modules of a pair of orthogonal geodesic foliations (Theorem 38). Their prod-
uct depends directly on the number of intersections of the leaves of these foliations.
This result can be understood as an extension of the reciprocity formula for a pair of
conjugate foliations (see [1]). We also obtain a formula for a product of modules
(with conjugate exponents) of a number of geodesic (not necessarily orthogonal)
foliations (Corollary 37). It depends exclusively on the measures of the leaves of
these foliations.

1. Properties of closing k-planes

First we introduce the necessary terminology.
Definition 1. A n-dimensional (unit) flat torus is the quotient manifold M = R" /7.

We take on M the strongest topology in which the canonical projection 7 : R” — M
is continuous. Then R" is a covering of M. Therefore it is locally homeomorphic to
an open set in R” and the differential structure on M can be defined by these home-
omorphisms. The canonical projection also carries to M the Riemannian structure
from R”. We will use the same symbol u, for the Lebesgue measure defined on R"
and on M.

Definition 2. A node is a vector v = (vi,..,v,) € Z". An irreducible node
v =(v1,..,Vy) is such a node that GCD(vy,..,v,) = 1 (we use the abbreviation GCD
for the greatest common divisor).

Let vy,...,viy € R" be linearly independent. By a k-dimensional parallelepiped
R(vi,...,vk) we call the set

R(vl,...,vk) = {061\/1 + OV, O, ..., 0 € [0, 1)}

We say that it is spanned by vectors vy,...,v (if it is clear what vectors define
a parallelepiped, it will be denoted simply by R).

Definition 3. We say that R(vi,...,v¢) is a fundamental domain if vy, ...,v; are lin-
early independent nodes and R(vy,...,vy) has the minimal k-dimensional Lebesgue
measure from all k-dimensional parallelepipeds that are spanned by nodes and lie in
lin(vi,...,vg).
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Definition 4. A k-plane is a k-dimensional plane that contains the origin. If a k-plane
contains a set of k linearly independent nodes it will be called a closing k-plane.

By a direct computation we get

Lemma 5. Let vy,...,vi € Z". Then Tt|g(y, ... v) - R(V1,-;vi) = T(lin(vy, ..., ) is
a surjection.

Lemma 6. Let vy,...,vy € R” be linearly independent. If for certain different points
x1,x2 € R(vq,...,vk) we have: x; = x, then R(vy,...,vy) contains a (nonzero) node.

As a corollary we obtain:

Lemma 7. Take vy,...,vy € R". The projection

TRy ,eo) S ROV o vi) = 7 (lin(vi, .., vi))
is injective if and only if R(vy, ..., vk) does not contain a nonzero node.
The following auxiliary facts are easy to show, so we omit the proofs.

Lemma 8. Assume that a set U C R" is such that ©t|y is injective. Then for every
¢ € R" also | (y ) is injective (here: U +c = {x+c,x € U}).

Lemma 9. If R(vy,...,vx) is spanned by nodes, then for arbitrary z € lin(vy,...,v¢),
n(R+2z) = n(R).
Lemma 10. For arbitrary parallelepiped R and for every node z € 7",
(R) = w(R+72).

Definition 11. Set k > 0. An element of the vector space AR"™ will be called
a k-vector (see[2]). Every k-vector w can be expressed uniquely as

w= Z ai,...i.eiy \...\Nej,
1<ii <. <ix<n
where ey, ...,e, stands for the canonical basis of R" and a;, .. ; € R. We name these
numbers the coefficients of the k-vector W (with respect to the canonical basis).
Moreover, the quantity:

W[ = Y o (@)

1<i1<..<ix<n

is the norm of A\fR" (it can be shown that it does not depend on the choice of
an orthonormal basis).

We know (see, for example, [3]) that the k-measure of a parallelepiped can be
expressed by the coefficients of the exterior product of vectors that span it. Specifi-
cally:
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Lemma 12. For an arbitrary k-dimensional parallelepiped R(v1,...,v¢),
Hie(R(v1, o vi)) = [Vi A A (D

It is easy to show that a fundamental domain has the following important property
(that also could serve as its definition).

Lemma 13. Let vy, ...,vy € Z" be linearly independent. A parallelepiped R(vy,...,vy)
is a fundamental domain if and only if it does not contain a nonzero node.

Proof. (=) Suppose the contrary - that R is a fundamental domain and contains
a nonzero node. In other words: there exist z € Z" and o, ..,04 € [0,1) such that
at least one of them is different from O and z = o vy +.. + V. Then

‘Ltk(Rl) = |V1 /\.../\(061\}1 —I—..—I—Otkvk)| = (Xk’\q /\.../\vk| < |V1 /\.../\vk| = /,Lk(R)

which would mean that R is not a fundamental domain. Contradiction.

(<) Assume that R(vy,...,vx) is spanned by nodes and does not contain a nonzero
node. According to Lemma 7, ¢ = |g : R — lin(vy,..., v )= is injective. Moreover,
it is a local isometry. Suppose that R is not a fundamental domain and denote the
fundamental domain of lin(vy,...,v) by F. Then u(F) < i (R). From the already
proved implication (" = ) we know that a domain that contains a nonzero node is
not fundamental. Therefore ' does not contain a (nonzero) node. So the mapping
¢ = | : F — lin(vy,...,vx)= has identical properties as ¢. In consequence, the
composition @' o @; : F — R is a bijective local isometry. It is not true, however,
since i (F) < u(R). Contradiction. O

The next lemma gives a useful characterization of a k-plane.

Lemma 14. For every k-plane P C R" there exists such a permutation of the canon-
ical coordinates from R" and such an arrangement of numbers @;; € R (where
i=1,..,n—k j=1,....k), that every vector v = (v!,...,V") € P satisfies the fol-
lowing system of equations:

061,1\/14- —|-061’ka —yk =0
: 2

OCn,kJVl—l- ... —I—(Xn,k’kvk " =0.

Definition 15. The numbers o; ; will be called the slope coefficients of the k-plane P
(with respect to the mentioned permutation of coordinates).

The following result formulates a necessary and sufficient condition for the close-
ness of a k-plane.
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Lemma 16. A k-plane P C R”" is closing if and only if its slope coefficients are
rational (for a certain permutation of coordinates and, in consequence, for every
permutation for which these coefficients are finite).

Proof. (=) The slope coefficients of P can be computed from the system (2). For
i=1,...,n—k we choose k linearly independent nodes xi,...,x;. Substituting them
to the i-th equation of (2), we get the system of linear equations with the unknowns
O 1,..., % k. Applying the Cramer formulas, it is easy to see that the solutions of this
system are rational.

(<) Assume that all the coefficients of (2) are rational. Treating k first unknowns
X1,...,Xg as the parameters, we get the system of independent equations. Substituting
integer numbers to these parameters, we obtain a rational solution (x4 1, ...,X,) (using
the Cramer formulas once more). Multiplying the vector (xi,...,x,) by the proper
number, we get a node from P. Repeating this procedure for k linearly independent
sequences of parameters gives us the thesis. O

Subsequent result will be very useful.
Theorem 17. For an arbitrary closing k-plane P C R", P+ is also closing.

Proof. According to (2), we can write that P consists of the vectors of the form:
(xl , ...,xk, Otl,lxl +...+ (X17kxk, c (Xn_kjlxl +...+ OCn_kJ(xk).

It is easy to see, that every vector from the following arrangement of n — k linearly
independent vectors:

(—Ollﬁl,..., —(X17k, 1,0,...,0),
: (3)

(_an—k,l PRRR) _an—k7k707 "'701 1)1

is orthogonal to P - so these vectors span PL. Since the slope coefficients o, ; are
rational, then multiplying every vector from the arrangement (3) by an adequately
chosen integer number, we obtain 7 — k linearly independent nodes from P O

An obvious consequence of the latter fact is

Corollary 18. If a k-plane P has rational slope coefficients, then also (n-k)-surface
P has this property.

Definition 19. A k-node is a k-vector that has integer coefficients. If the GCD of
these coefficients equals one, we name it an irreducible k-node.
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Definition 20. A k-vector that is the exterior product of k certain vectors of R" is
called simple. Every such a k-vector determines the k-plane

P={veR":vAWw=0},
that will be named the k- plane generated by that k-vector.

It is easy to see that (simple) k-vectors that generate the same k-plane must be linearly
dependent.
The following implication holds

Theorem 21. Let vy, ..,vi € R" be linearly independent nodes whose exterior product
Vi A ... A is an irreducible k-node. Then R(vy, ..., vy) is a fundamental domain.

Proof. Suppose that R(vy,...,v) is not a fundamental domain. Thus, there exist
nodes wi,...,w; and a parallelepiped R;(wi,...,wx) such that e (R;) < Wi(R).
Obviously, wi A ... Awy generates the same k-plane as vy A ... Avg, so it has the form
cvi A ... Avg, where ¢ € (0,1). Contradiction. O

Recall the well-known formula for the coefficients of a simple k-vector:

Lemma 22. Assume that by, ..., b, is an orthonormal basis of R" and let vy, ...,vi € R"

be an arrangement of arbitrary k-vectors (whose coefficients are written in that

basis). Denote by a;, . ; (1 <iy < ... <iy < n) the coordinates of the k-vector

Vi A ..., \Vg in that basis, and by M;, . ; - determinants of the matrix that consists
Vi

of columns iy, ..., i of the matrix : |. Then

Vi

M;, . i, = ai,. - 4

Applying the latter result, we get:
Lemma 23. The k-plane generated by a simple k-node is closing.

Proof. We will show that the slope coefficients aj; (i =1,...,k,j = 1,...,n — k) of

this plane are rational. Since W is simple, so there exist vectors vy, ..., v, such that
V1

Vi A... A\vp = Ww. Define the matrix M = : andletM; ;,1<i1<..<ig<n
Vk

be the determinant of the matrix built from these columns of M, that have numbers

i1,...,ik. Without loss of generality, we can assume that M; _; # 0. For arbitrary
ie{l,.,.k},je{l,...n—k},

i
My, vt ki = (1) oMy g
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According to the previous lemma, the coefficients of the k-vector w are the minors of
the maximal degree of M. From the assumption that wis ak-node, M1y =a; i €Z
and *a;My =M i 111, kk+j = a1,..i-1i+1,. kk+j € Z. Therefore aj; € Q.
From Lemma 16 we get the thesis. O

On the basis of that fact, we obtain

Theorem 24. The following conditions are equivalent:

1. The exterior product of k nodes that span a fundamental domain is an irreducible
k-node.

2. For an arbitrary simple k-node W there exist such nodes vi,...,vy, that
VIA .. AVE=W.

Proof. 1.= 2. Take any simple k-node w. According to Lemma 23, it spans a closing
k-plane P. Choose the nodes zj, ...,z in P such that R(zj,...,zx) is a fundamental
domain. Obviously, cz; A ... Az =W for a certain ¢ € R\ {0}. From the assumption,
¢ € Z. Substituting v = cz1, V2 = 22,...,Vx = Zx We get the thesis.

2.= 1. Suppose that —1. Thus, there exists a fundamental domain R(vy, ..., vk), such
that vi A ... Avg = W is an reducible k-node. Take such a p € N, that p|. Then the
k-node 11 cannot be the exterior product of any k-nodes, since it would contradict
the fact that R is a fundamental domain. Therefore —2. O

Now we quote an important theorem ([3]) that will give us several conclusions:

Theorem 25. A system of linear equations (with integer coefficients)
anXy+...+amx, =0, (r=1,...m), 5)

where m < n, has n —m solutions x; = (x!,....x") € Z" (s = 1,...,n —m), such that
the matrix whose rows are the vectors of these solutions has a property that the GCD
of its minors of maximal rank equals 1.

A consequence of the above result is the implication converse to that of Theorem 21:

Corollary 26. The exterior product of the vectors that span the fundamental domain
(of a closing k-plane P) is an irreducible k-node.

Proof. Since P is closing, then, from Lemma 16, all its slope coefficients are
rational. Thus, the system of equations determining P can be transformed to (5),
for m = n — k. From the previous theorem, we know that it has k solutions wy, ..., wy,
such that minors of the rank & of the matrix composed from these solutions constitute
a set of relatively prime numbers. Therefore, from Lemma 22, the k-node wy A... Awy
is irreducible. According to Theorem 21, R(wy,...,wy) is a fundamental domain. At
last, from the definition of the latter and Lemma 12 results that every fundamental
domain of P has to be irreducible. O
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On the account of Theorem 24, the above conclusion implies the following

Corollary 27. For an arbitrary simple k-node W, there exist nodes vy, ...,v; € R" such
that vi A ... \Nvg = W.

Definition 28. Leta;, ;, € R (1 <ij <... <iy <n) be the coefficients of a k-vector
W (with respect to the canonical basis). The Hodge star of W is a (n — k)-vector xWw
of the form (see [4]):

*W = Z a,-h”_,,‘ksgn(il,...,ik,jl,...,jn_k)ej] /\.../\ejwk7 (6)
1<i1<o.<iz<n

where ji,..., ju_i € {1,...,”}\{i1,...,ik}, 1<ji<..<jpnirx<n
Finally, as a consequence of the preceding facts, we obtain

Theorem 29. Assume that P C R" is a closing k-plane and the nodes vy, ...,v; span

/

a fundamental domain in P and that vy, ...,v),_, are the nodes that span such a domain

in PL. Then *(vi A ... A\vg) = 2V| A ... AV, and

,LLk(R(Vl,...,Vk)) = .un—k(R(vlla“'avil—k))'

Proof. Letw =viA... Avi. From the definition, *w is a (n-k)-node whose coefficients
are - in the absolute value - equal to the corresponding coefficients of w. Thus, *w is
irreducible. Moreover, *Ww = cv’1 VANTIWAN v;l_ i for a certain ¢ € R. However, from the
Conclusion 26, v{ A... AV/_, is irreducible as well. So |c| =1 and we get the first
part of the thesis. Its second part follows from Lemma 12. 0

The reasoning presented above can be repeated also for a more general flat torus,
defined by replacing in Definition 1 the module Z" by the module generated by
a given basis of R" (that can be named the basis of torus). In this case a node
(Def. 2) should be defined as a vector that has integer coefficients with respect to
the basis of a torus. Analogically, in the definition of a k-node (Def. 27) the canon-
ical basis should be replaced by the basis of torus. The same modification would be
applied in the definition of the slope coefficients of a k-plane. Taking those changes
into consideration, all the results that precede Theorem 17 hold (assuming that v € Z"
denotes a vector having integer coordinates in the basis of torus), whereas that the-
orem itself is true if only the vectors that constitute the basis of torus have rational
coordinates (in the canonical basis). Other results, excluding Lemma 12 and Theo-
rem 29, transform automatically to another flat torus. Lemma 12 is true in its orig-
inal form - the coefficients of a k-node related with the fundamental domain should
be written in the canonical basis. In turn, the Theorem 29 holds only for the unit
(flat) torus, since the coefficients in the formula (6) for the Hodge star are taken
with respect to the canonical basis.
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2. Module on the flat torus

Set 0 < k < n. Recall that

Definition 30. Denote by .# a family of smooth, k-dimensional submanifolds of
M. We call the function f p-admissible (p > 1) for .# with respect to M (writing:
f€admy(A ,M)) if

1. fell(M)
2. f > 0 almost everywhere on M
3. [, fdux > 1 for almost every element L € M .

The p-module (or the module with exponent p) of a family 4 of smooth, k-dimensional
submanifolds of M is a number:

mod, (M M) = inf |l
feadmy,(# M)

(setting: mod, (M ,M) = oo if adm, (A4 M) =0).

A p-admissible function fo is called p-extremal if
| follLr ey = mod, (A \M).

Definition 31. (/5]) A k-dimensional foliation is a decomposition of M into a family
Z of disjoint, connected submanifolds of dimension k with the property that for every
point x € M there exists a neighborhood D of x and a chart
o= (0", 0%,...,0") : D— R", such that ¢(D) is an open cube and for every L € .Z,
satisfying: LND #£ 0,

1 _ +k+1
¢, = const, (p‘JL = const,
and
(p|]L = const, (p"’L = const,

fora given j € {0,...,n—k}. The elements of F are called leaves.

The next theorem ([6]) presents a useful formula for a module of a foliation defined
by a submersion (i.e. a foliation whose leaves are the level sets of that submersion).

Theorem 32. If a foliation % of M defined by a submersion ¢ and for a.e. L,
1
fLJéH dy < oo, then for p > 1

1
4P (F) = / / T2 dug ) g, 7
mod?(F) (P(M)( A5 L) g ) ™
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and if modh (F) < oo, there exists exactly one extremal function v: M — R,
Jo(x)7
L
fL_X Jqffl dur,

where Jy is a function that assigns to every x € M an absolute value of the determinant
of the matrix of the isomorfism: @, (x) () (in orthonormal bases).

v(x) = ; (®)

|ker(¢*

Definition 33. A totally geodesic (k-dimensional) surface is such a k-dimensional
surface G C M, that every geodesic curve tangent to G in one point, lies in G.
A compact totally geodesic surface will be briefly named a ctg surface.

A compact geodesic (k-dimensional) foliation on M is a foliation whose leaves are
k-dimensional ctg surfaces of M.

On the basis of Theorem 32, we compute the module of a geodesic foliation:

Lemma 34. Let .F be a compact geodesic foliation on M. Then

mod,(F) = un(i\}/I)P’ &)

for p > 1, where v denotes the measure of a leaf of F

Proof. According to Theorem 32, .% has the unique extremal function, that equals
1

=. Thus

v

un(M)é_

~

P —

mody(F) = ([ (5)7diu)
OJ

In particular, it is easy to see that the module of such a foliation on a unit torus
does not depend on the exponent p.

Moreover, we get the following formula for the product of their modules with
conjugate exponents:

Theorem 35. Let 7,..,. %, be compact geodesic foliations on M. For arbitrary
conjugate exponents pi, ..., P

M
mody, (F1) - mody, (F) - ..-mody (F) = o) (10)
VI Vg
where vy, ..., v denote the measures of the leaves of the corresponding foliations.
Proof. This is a straightforward consequence of Lemma 34. O

Since now, we assume that M is the unit flat torus.
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Lemma 36. Let R be a n-dimensional parallelepiped spanned by the nodes vy, ..., v,,.
Assume that R has an integer volume v € N. Then R contains exactly v representatives
of every equivalence class of M.

Proof. Let M be the torus generated by the basis vq,...,v,. Denote the equivalence
relation defining M by =,;. Choose an arbitraryx € R" and denote by xi,...,x,, € R
such points, that xp,...,x, € [x]. Now, take any y € R". Let s be such a point, that
y = x1 +s. Define y; = x; +s, for i = 1,...,m. Then for every i, y; € [y] (since y; —y =
xi—xi € Z"). Simultaneously, [yi]=;, 7 ... # [ym]=, (since [xi]=;, # ... # [xu]=,).
Next, from the definition of M it results that for every z € R", there exists 7 € R,
such that 7 € [z]=,. So, there exist points J; € [yi]=,. satisfying: §; € R. From the
arbitrariness of x and y we obtain that R contains the same number of representa-
tives of every equivalence class of M. From the fact that J; = 1 we get the thesis
(m=v). ]

An immediate consequence of this lemma is

Corollary 37. A parallelepiped of the measure n, that is spanned by nodes, contains
exactly n — 1 nonzero nodes.

We will show a relation between the product of modules of two orthogonal geodesic
foliations with the number of intersections of their leaves.

Theorem 38. Fix 1 <k < n. Assume that 4 is a k-dimensional compact geodesic
foliation on M, whereas %, is a (n-k)-dimensional geodesic foliation, whose leaves
are orthogonal to the leaves of 4. Then, for p > 1,

1

mod,, (%) - mod, (%) = 7

an
where I denotes the number of intersections of an arbitrary leaf of 4 with an arbi-
trary leaf of 9.

Proof. Let F, F, be fundamental domains of the (k- and (n-k)-) planes covering
the leaves of G| € ) that go through [0]. Denote v = (i (Fi) = L, (F2) (this
equality results from the Conclusion 29). Define R = F; x F>. Then u,(R) = 2.
From the Conclusion 37 we know that R contains exactly v?> nodes (including 0).
Denote them by wy,...,w,2. Let Fli =F+c,fori=1, ...,v*, where ¢; € B> is such
a (k-dimensional) parallelepiped, that w; € F{. From Lemmas 9 and 10 we have
that for every i, the projection 7 transforms F; bijectively on G;. Now let G, be
an arbitrary leaf of the foliation %. From the definition of F, and the fact that
(R) = M, there exists a (n-k)-dimensional parallelepiped F21 =F+c(c € F), for
which 717(F21) = G;. The orthogonality of F| and F, ensures that le intersects every
Fli exactly once. Denote the points of these intersections by s;, i = 1,...,v>. On the
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other hand, we know that 7| F) is bijective (since le is a translation of F, - see Lemma

8). Thus 7(s;) are distinct points of M. In consequence, G, = (F,) intersects G,
exactly v? times. The above argument, applied for Gy, can be repeated for an arbitrary
leaf of ¢;. Application of formula (9) finishes the proof. ]

Final remarks

Theorem 38, that expresses the product of modules as a function of the number of
intersections of the leaves of two orthogonal, geodesic foliations, is a consequence of
the results present before: properties of compact totally geodesic surfaces on the flat
torus and the formula for the module of a geodesic foliation. It is also interesting if
any analogues of this relation can be found for other manifolds. It will be the subject
of our further research.
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