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Abstract. In the paper the problems of cryosurgery treatment are discussed. In particular 

the heat exchange between external cylindrical cryoprobe and human tissue is analyzed. 

The cryoprobe tip temperature changes from the initial temperature to the minimal one and 

back in a linear way (broken line). Thermophysical parameters determining the thermal 

properties of tissue can be treated as the temperature-dependent functions. The freezing 

model bases on the approach called ‘a one domain method’, and in the energy equation 

called a substitute thermal capacity appears. At the stage of computations the control 

volume method (CVM) is used. In the final part of paper the examples of computations 

are presented. 
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Introduction 

The cryosurgery treatments consisting of the local freezing of tissue has recently 

become a popular method of treating a variety of diseases. Surface treatments on 

the skin tissue are performed using the so-called cylindrical cryoprobes (shape of 

cryoprobe tip - Fig. 1). 
 

 

Fig. 1. Domain considered [1] 



R. Szopa, J. Siedlecki 132

The essential problem (from the medical point of view) is the proper choice of 

cryoprobe operation time ensuring the adequate depth of freezing. In particular, 

this time is dependent on the radius of cryoprobe tip, its operating temperature, 

mode of tip temperature changes and the tissue thermophysical parameters. Here, 

the changes of temperature from its initial value to final one Tmin and back are 

assumed in a form of broken line, the cooling (heating) rates v (–v) correspond 

to slopes of successive segments. Such a complicated problem can be solved using 

the numerical methods. In this paper the control volume method is used. All param- 

eters appearing in the energy equation are assumed to be temperature-dependent. 

Such a complicated problem can be solved using the numerical methods. In this 

paper the control volume method is used. 

1. Governing equations 

The partial differential equation (the Pennes equation [2, 3]) describing the tissue 

freezing process can be written in the following form 
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where c is the tissue volumetric specific heat, λ  is the thermal conductivity, LV is 

the volumetric freezing heat, fS is the volumetric fraction of a frozen state at the 

point considered, Qp is the perfusion heat source, Qm is the metabolic heat source, 

T, x, t denote temperature, spatial co-ordinates and time. 

The perfusion heat source is equal to 

 ( ) ( )[ ( , )]p bQ T k T T T x t= −  (2) 

where k(T) = Gb (T) cb , Gb is the tissue perfusion coefficient (dimension 

[m
3
 blood/s/m

3
 tissue]), cb is the volumetric specific heat of blood, Tb is the arterial 

blood temperature. 

The fraction fS (see: equation (1)) is the function of temperature, that is 
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and then the equation (1) takes a form 
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is the substitute thermal capacity. The introduction of this parameter leads to the 

model being called ‘a one domain approach’ or ‘a fixed domain approach’ [2, 3]. 

If T1 and T2 denote the temperatures corresponding to the beginning and the end of 

tissue freezing then for T  > T1: fS (T ) = 0, while for T < T2: fS (T) = 1 and C(T) → c(T). 
So, the equation (4) describes the heat transfer processes in the whole convention-

ally homogenous domain. Taking into account the cryoprobe geometry the energy 

equation (4) should be written in the form corresponding to the cylindrical 

co-ordinate system x = {r, z} (axially-symmetrical problem) meaning 
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The boundary condition given on the contact surface between tissue and cryo-

probe tip is of the form of Dirichlet condition, namely 
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where T0 is the initial temperature of tissue, u is the cooling (heating) rate, t0 is the 

cooling time, Tmin denotes the final temperature of a cryoprobe tip. For the others 

parts of external boundary (conventionally assumed cylindrical domain) the no-flux 

conditions are taken into account. For t = 0 the initial temperature field is known. 

In Figures 2 and 3 the courses of substitute thermal capacity and thermal con-

ductivity of tissue are shown [1], while the other parameters are assumed to be the 

constant values. 

 

 
Fig. 2. Substitute thermal capacity C(T) 
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Fig. 3. Thermal conductivity 

2. The Control Volume Method 

The domain considered is divided into control volumes (CV) in the shape of 

rings - as in Figure 1. The central points of CV (circles) correspond to the nodes 

for which the time-dependent temperature field is calculated. Additionally, the time 

grid 
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... ...
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with the constant time step t∆  is introduced. 

For transition t
 f−1
 → t

 f
 the energy balance for volume 

0
V∆  can be written in the 

form 
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where e = 1, 2, 3, 4 denotes the adjoining nodes (1 - right, 2 - left, 3 - top, 4 - bottom), 

e
A∆  are the surfaces limiting CV in e direction, 1f

eR
−  are the thermal resistances 

defined as follows: 
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where , 1,2, , 3,4
e e
h r e h z e= ∆ = = ∆ = . For the boundary nodes for which the no-flux 

condition is given, one should assume that in the direction to external boundary 



Application of the Control Volume Method in numerical modeling of cryosurgery treatment 135

1f
eR
−

→∞, while for the boundary with Dirichlet condition the nodal temperatures 

are known. Using the equation (9) one obtains 
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while r0 is the radial co-ordinate of central node. The system of equations (11) 

allows one to determine ‘step by step’ the nodal temperatures for the successive 

time levels. It should be pointed out that for the explicit scheme presented, the 

stability condition [4, 5] must be respected. 

3. Results of computations 

The solution whose fragment is presented in Figure 4 has been obtained for 

the tip diameter equal to 10 mm, cooling (heating) rate u = 10 K/min, cooling time 

t0 = 10 min, the data concerning the capacities of internal heat sources and the 

parameters of skin tissue can be found in [5]. 

 

 

Fig. 4. Temperature field after 10 min 
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