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Abstract. In this paper we present protocols checking the equality of two distributed 

numbers and calculation of the product in such a way that the distributed numbers are 

unknown to anyone. The presented protocols use the Chinese Remainder Theorem. 

As a result, the obtained protocols have many interesting cryptographic features. 
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1. Introduction 

This paper discusses the multiparty computation protocols with the use of 

the Chinese Remainder Theorem. Of the many protocols with such application, 

we discuss two selected protocols. We adopt the honest-but-curious framework 

of multiparty computations, executed collectively in a fully (completely) decentral-

ized environment of cooperating agents (participants, players, computers, servers, 

processes, devices, mobile devices), in which � ≥ 3 parties collectively generate 

a protocol result. Because of the cryptographic application, the typical length of the 

participants’ shares should be greater than 500 bits. 

The integer is never revealed to any party. We assume that our protocol is run 

without any trusted party (server, dealer, or central authority). 

The participants are assumed to communicate over secure channels, meaning 

that the messages sent from one participant to the other are private and no one can 

interfere along the way. We assume that all participants follow the protocol 

honestly. 

Fully distributed or fully decentralized means: with no trusted party whatsoever 

and with all the parameters shared as secret. 

The main idea is that both the input and output integer parameters are never 

revealed. Instead, they are shared by participants using an appropriate secret sharing. 
We are going to use the elementary additive secret sharing but also secret sharing 
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based on Shamir secret sharing as in [1, 2] and the BGW method [3, 4]. We use 

also the Chinese Remainder Theorem (see [2] and [5]). In the area of multiparty 

computation, five papers [6-10] deserve special attention. The papers deal with 

distributed primality testing. 

Our paper is organized as follows. In Section 2 we discuss Shamir’s secret 

sharing. Section 3 presents the BGW method, which is a protocol for distributed 

product computing. In Section 4 we introduce two new protocols, using the 

Chinese Remainder Theorem. Finally, Section 5 concludes the paper. 

2. Shamir’s secret sharing 

The first threshold schemes were initiated by two papers published almost 

simultaneously in 1979, A. Shamir How to share a secret [1] and G. Blakley Safe-

guarding cryptographic keys [11]. 

To build a threshold scheme, Adi Shamir [1] uses a polynomial over a finite 

field. First, a prime number has to be selected (let's call it �), which is greater than 

the number of protocol parties � and greater than a password (secret, key) �. 

The password will be distributed among the parties. If the threshold is �, it is gen-
erated a polynomial ���	 of degree � − 1 with coefficients derived from the field 

ℤ� (
�(�)) and free term equal �. A prime number � is public, and the coeffi-

cients of the polynomial must be secret and known only to the person choosing 

them, i.e. the dealer. The shares of the distribution, also known as the shadows, 

are the values of this polynomial for � different arguments. 

Let’s denote a share belonging to the party � by ��. It is often assumed that 

�� 	=	���		mod	�. � or more participants can reconstruct the password �. The recon-

struction is to restore the polynomial based on at least � its values and computing 

the value at zero of this polynomial. Generally, we often use here Lagrange inter-

polation formula. 

A more general approach to the presented problem can be found by the reader 

in [12-14]. 

2.1. Secret sharing 

A dealer (a trusted third party) has to generate a random password � (�∈ℕ+). 

Then the dealer shares the key among � parties (participants). He executes this 

as follows; he randomly selects a prime number � of a feature that �	>	max(K,	n) 

and assumes that ��	=	K. Now the dealer randomly chooses � − 1 coefficients 

��, ��, … , ���� belonging to the field ℤ� and he denotes ���		=	��+	���+	���� +

⋯ + 	��������. The dealer computes �� 	�	���		mod	� for 1⩽	i	⩽	n, and he dis-
tributes a pair of numbers �i,	K�� to each participant. 
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Distribution of password � 

1. The dealer generates a prime number � greater than max�K,	n		and defines 
��	=	K. 

2. He denotes in field ℤ�, � − 1 random coefficients ��, ��, … , ���� and considers 

polynomial over field �� as ���		= ��+ ���+ ���� + …+ ��������. 

3. He computes �� 	=	���		mod	p, for 1⩽	i	⩽	n and sends the share �i,	K�� to the 
party �. 

2.2. Password reconstruction 

� or more parties (the participants) can appoint password �. There are several 

options that can be proposed here. The most common way of obtaining a key � is 

the Lagrange interpolation formula. Suppose, we have shares �	of participants 

���,	K��
� , ���,	K��

� ,	...	, ��� ,	K��
�. 

Now, we get �	from K = ��0	 mod � =∑ ���
�
j=� ∏ ��

�����
�⩽k ⩽ t, k	
 mod �. 

3. The product of two unknown to anyone (distributed) factors 

- the BGW method 

This section discusses the protocol of distributed product computing - the BGW 

protocol [3, 4] (acronym of authors’ last names Ben-Or M., Goldwasser S., 

Wigderson A.). The party in the submitted protocols is equated with the participant 

(computer or server) of protocol. In the submitted protocols, three or more parties 

will take part. We assume that each party may communicate with any other party. 

Messages sent from one participant to the other are private, and no one can inter-

fere along the way. Furthermore, we assume that all parties of the protocol are fair. 

In consequence of this, presented protocol is 
���

�
 private. This means that any 

coalition of 
���

�
 (or less) parties does not recognize the factors of the computed 

product. However, a coalition of more than 
���

�
	parties may recover the factors of 

the mentioned product. The reason for this is privacy of the used BGW method. 

Replacing the BGW method by the Cocks method [15], the presented method can 

achieve the greatest possible privacy, i.e. � − 1. 

In our protocol there are � participants involved, and � is the product of two 

numbers � and �. The party � has secret numbers ��  and ��, called its shares. 
The sum of the shares is � and � in such a way that �	=∑ ���

i=� ,	q =∑ ���
i=� . 

This method shows a distributed computing � = �∑ ���
i=� 	�∑ ���

i=� 		mod	P	 so that 
none of the parties could know both � or �, and only a coalition of more than 

���

�
 

parties can recognize factors � and �. So, in order to know the factorization of �, 

you have to bribe at least half of the protocol participants. The protocol is derived 
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from the work of Ben-Or, Goldwasser and Wigderson, in which the authors describe 

an elegant protocol to compute �, for three or more parties. Practically, we take 

a prime number �	greater than �. Let also	s	=	 ����
�

�. 
 

The BGW method for distributed computation �	=	�∑	�� 		 ⋅ �∑	��			mod	P 
1. Each party chooses two random polynomials of degree �, i.e. party �	chooses 

��,	g� ∈ ℤ� !", such that ���0		=	p
�
,	g

�
�0		=	q

�
 and a random polynomial 

ℎ� ∈ ℤ� !" of degree 2s, such that ℎ��0	 = 0. 

2. Each party computes 3n	 values, i.e. party � computes: ∀�⩽j⩽n	�i,j=	���#	, 
q
i,j
	=	g

�
�#	,h

i,j	=	h��#	. Party � sends to party #: �i,j,qi,j,hi,j. 
3. Party � computes: �� = �∑ �j,i

�
j=� ��∑ �j,i

�
j=� � + �∑ ℎ�

�
i=� 		mod P. The result is 

given to the public or transmitted to other parties. 

4. Parties, having �� 	with using Lagrange interpolation formula, receive polyno-

mial $��	 = �∑ �
�
j=� ��	� �∑ %


�
j=� ��	� + �∑ ℎ


�
j=� ��	� �mod	P	. 

 

In view of the equality $�0		=	N	parties receive 	N. 

4. Proposed protocols 

In this section we will present original protocols checking the equality of two 

distributed numbers and distributed multiplication, using the Chinese Remainder 

Theorem. We will indicate the correctness of these protocols and we will present 

their bit complexity. Although such solutions are known so far, we have not 

cognized such a type of approach for the considered issues. 

4.1. Chinese Remainder Theorem 

Chinese Remainder Theorem is a theorem that is widely applicable in crypto- 

graphy. It can often be used to speed up the computations. In addition, it is used 

to construct a number of libraries for computations on large integers. Libraries 

of this type find application in the aforementioned cryptography. 
 

Theorem (Chinese Remainder Theorem). 

If the integers ��, ��, … , � are pairwise relatively prime, then the system of simul- 

taneous congruences 

� ≡ ��	mod	�� 

� ≡ ��	mod	�� 

	⋮ 
� ≡ � 	mod	� 

has a unique solution modulo N	�	�� ∙ 	�� … �. 
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Gauss’s Algorithm. The solution & to the simultaneous congruences in the Chinese 

Remainder Theorem may be computed as �	=	∑	�� 	�� 	'� 	mod	N, where �� =	N ��⁄  

and '� = ��
��	mod	�� [2, Ch. 2]. It is easy to notice that the algorithm can use 

a mechanism of parallelization or distribution. We use the algorithm in the following 

protocols. If we know the values �� ,�� ,	N, we can determine the value � in a fast 

O�log	2N� operations) and simple way. 

4.2. The protocol verifying equality of two distributed numbers 

The following procedure involves a group of � participants of the protocol, 

in which the participant � holds the shares �� and ,� . 

In the procedure given below, the result of subtraction of , and � does not leak 

any information if the coalition of conspiring parties is less than �. 

The procedure returns true, when ∑�� = ∑,�, and false, when ∑�� ≠ ∑,�. We 

assume that all parties know a collection of � primes p
�
, p

�
,..., p


 (or, at least, 

pairwise relative primes) such that ∑�,� − ��	 < ∏��. To improve efficiency, 

the public primes 	p
�
,	p

�
,...,	p


 should be as small as possible and at the same time 

they should be close to each other. 
 

The main idea of this procedure is based on the Chinese Remainder Theorem. 

Step 1 gives a new distributed number S	=	, − �. Next, each party � produces 
shares -


� for the integer .�=	,� − ��  using the Chinese Remainder Theorem. 

Shares are sent via secure channels to the other parties. In Step 4, all parties check 

the equality and broadcast their results. In this chapter, we assume that the value 

of 	λ� is �−1�k+� ��� �. 
 

equal (��, ,� , k, p�, p�,	..., p


;	∑�� = ∑,�  is true) 

INPUT: of party �: �� ,	,� ,	k and the set 	p�,	p�,...,	p

 of public primes. 

OUTPUT: of party �: true/false an answer to the question: whether ∑�� = ∑,�? 
 
1. Each party computes its own share in ., which is the result of subtraction         

of � and ,; i.e., party � computes .� 	=	,� − ��. 
2. Each party  � computes � values  -�

� ,	-�
� ,	...,	-

�  where -

� 	=	S� 	mod	p



. 

3. Party � generates � polynomials ,���	,	,���	,	...,	,��	 of degree � − 1 over 

the fields ℤ��
,	ℤ��

,	...,	ℤ��
with the free coefficients -�

� ,	w�
� ,	...,	w

� , respectively. 

4. Party � computes  �� values ,���	, for m,	n from 1 to �. 

5. Party � sends /
� 	=	,��#	 to party #. 
6. Party � computes 0� 	=	λ� 	∑/�


	mod	p
�
. 

7. Party � generates the random value 1� and computes 1� ⋅ 0�. 
8. Party � generates polynomial ����	 with integer coefficients of degree � with 

free coefficient  1� ⋅ 0�. 
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9. Party � computes  � values ���1	,	Z�
�2	,	...,	Z�

��	. 
10. Party � sends to party # the computed values 2
� 	=	Z�#	. 
11. Party � computes �� 	=	λ�∑2�



mod	q. 

12. Parties reveal their values ��, if the sum equals zero, they return true, otherwise 

false. 

Analysis of complexity 

In the procedure analysed here, we assume that the length of all the shares in the 

distributed number does not exceed � bits and the number of participants is �. 

The communication overload complexity (the number of bits that each participant 

must send to the others) of the procedures is 3�� ⋅ �	. 
The procedure equal (��,	,� , �,	p

�
,	p

�
,	...,	p


; ∑�� = ∑,�  is true) needs 3�� ⋅ �� ⋅

log � bit operations and their communication complexity is ��⋅�. 

Correctness of the distributed equality checking 

The protocol checking the equality of two distributed numbers is 

equal(�� ,,�,	k	,p�,	p�,	...,	p


; ∑�� = ∑,� 	is true). Each party involved in this proce-

dure inputs, in addition to its shares in the two distributed integers, � (relative) 

primes. The product of those primes is supposed to be bigger than the difference 

between the two numbers that we are comparing; i.e. , − P	<	 ∏ 	�� . The protocol 

returns true when �∑-

� 	mod	p



� = �∑/
� 	mod	p



�, for each 1⩽	j	⩽	k. We continue 

our analysis for a fixed prime �
 . The last equality entails that in step 3 of the pro-

cedure we have �∑.��	mod	p


�modp



= �∑.��	mod	p



�mod	p



. Since .� 	=	S�

� − .��, 
we get �∑.�	mod	p



= 0. Hence, for each 1⩽	j	⩽	k, we have �, − �		mod	p



= 0. 

Finally, by the fact that , − P	<	 ∏ 	p
�
 we get the equality of � and ,. 

4.3. The protocol computing the product of two distributed factors 

with use of the Chinese Remainder Theorem 

This section discusses the protocol of distributed product computing with the 

use of the Chinese Remainder Theorem. As in the previously submitted protocols, 

there are three or more parties participating in the protocol. We assume that each 

party may communicate with any other party. Messages sent from one participant 

to the other are private, and no one can interfere along the way. Furthermore, we 

assume that all parties of the protocol are fair. 

In consequence of this, the presented protocol is � − 1 private. There are � 

participants involved in this protocol and � is the product of � and ,. The party � 
has two secret numbers �� 	and ,�  called its shares. The sum of the parts is � and 

,, such that P	=	∑��, ,	=	∑,� . This method presents distributed computation 
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� = �∑��	�∑,�	 mod M , so that no party could learn neither � nor , and only 

a coalition of more than � − 1 parties can get to know factors � and ,. So, in order 

to know factorization �, you have to bribe at least half of the protocol participants. 

Practically, you have to take a prime number ' greater than �. 

Below we present the protocol of distributed computing of 	N	=	�∑��	�∑,�		mod M. 

 

multiplication (��, ,� , k, p�,p�,	..., p; N = �∑��	�∑,�	 mod M ) 

INPUT: of party �: �� ,,�,k	and the set p�,p�,...,p

 of public primes. 

OUTPUT: � = �∑��	�∑,�	 mod M  

 

1. Party � computes 2 ⋅ � values /�  = P�	mod p


 and -� 	= ,� mod p



 for 1⩽ j ⩽k. 

2. For each party, the participants come together to compute the values of the two 

sums, i.e. for party � they compute ��� = ∑/
 mod p
�
 and ��� = ∑-
	mod p

�
 

[see below, sum]. 

3. Party � computes: �� = ∏ �

	� , '�		= N�
�� mod p

�
 and values !� 	= N� ⋅ '� ⋅ ���   

and 4� = N� ⋅ '� ⋅ ���. 
4. Using the BGW method, parties compute the value: �	=	�∑	!�	�∑	4�		mod M . 

 

The value computed in step 4 is the value of the product 

�	=	�∑��	�∑,�		mod M . The second step of this protocol is implemented 

on the basis of common computing of the distributed values sum, for a chosen 

party. Below we present an example of implementation of protocol for multiparty 

computing the sum (example implementation for step 2). 

 

sum (��,	k,	j;	∑��) 
INPUT: of party �: �� ,	k,	j. 
OUTPUT: of party #: ∑��. 

 

1. Each party generates a random polynomial of degree � − 1 over a finite field 

with a value of zero equal to its share. Let party � generate the polynomial 

�i�x		�	�
k–1

	x	
k–1+	�

k–2
	x	k–2+…+	�1x	5	��. 

2. Each party computes � values of our polynomial e.g. values for 1,	2, … ,	k. 
3. Each party sends the value for argument # to the party of number #. 
4. Party of number � adds the values obtained in step 3. 
5. Party � multiplies the sum obtained in step 4. by the value �−1�	k+� ��� �. 
6. Parties send the value obtained in step 5. to party #. 
7. Party # computes the sum �
 of values obtained in step 6. 
 

The protocol presented above for computing the sum is � − 1 private. So, any 

coalition of � − 1 or less parties (excluding the party of number #) does not know 

the computed secret. 
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The Chinese Remainder Theorem used here increases the cryptographic power 

of protocol for ordinary multiplication of two distributed numbers. 

5. Conclusions 

In this paper we focus on the applications of the Chinese Remainder Theorem 

in protocols for verifying the equality of two distributed numbers and computing 

the product of two distributed numbers. The discussed protocols form the begin-

ning of our research on applications in the field of multilateral Chinese Remainder 

Theorem computations. We intend to expand our research into other protocols, 

among others, protocols for comparing distributed numbers (Millionaires’ problem) 

or protocols for remainder computation etc. 

Presented protocols can be used in more advanced protocols, including distrib-

uted primality testing. The problem will be described in the next article which will 

be published soon. In this article I will be co-authored. Another proposed research 

will be application of the proposed protocols. 
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