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Abstract. In this paper a description of heat transfer in one-dimensional crystalline solids 
is presented. The fuzzy lattice Boltzmann method based on the Boltzmann transport equa-
tion is used to simulate the nanoscale heat transport in thin metal films. The fuzzy coupled 
lattice Boltzmann equations for electrons and phonons are applied to analyze the heating 
process of thin metal films via a laser pulse. Such an approach in which the parameters 
appearing in the problem analyzed are treated as constant values is widely used. Here, 
the model with fuzzy values of relaxation times and an electron-phonon coupling factor 
is taken into account. The problem formulated has been solved by means of the fuzzy 
lattice Boltzmann method using the α-cuts and the rules of directed interval arithmetic. 
The application of α-cuts allows one to avoid complicated arithmetical operations in the 
fuzzy numbers set. In the final part of the paper the results of numerical computations 
are shown. 
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1. Introduction 

The estimation of heat transfer processes proceeding in metal micro-domains 
(e.g. thin metal films) subjected to an ultrafast laser pulse is of vital importance 
in microtechnology applications. It should be pointed out that taking into account 
the extreme temperature gradients, extremely short duration and the domain dimen-
sions expressed in nanometers, the macroscopic heat conduction equation basing 
on the Fourier law cannot be used [1-3]. The generalization of this law resulting 
from the introduction of the delay time between the heat flux and temperature gra-
dient (relaxation time τq) leads to the well known Cattaneo-Vernotte equation [4] 
belonging to the group of hyperbolic PDE. The alternative, more general, mathemati- 
cal model called the dual phase lag equation (DPLE) takes into account two delay 
times concerning both the heat flux and the temperature gradient (the thermalization 
time τT). The DPLE contains a second order time derivative and higher order mixed 
derivative in both time and space (e.g. [5-8]). The other approach to the micro-scale 
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heat transfer analysis involves the use of two-temperature models. The two-tempe-
rature hyperbolic (parabolic) model consists of equations describing the temporal 
and spatial evolution of the lattice and electrons temperatures, the lattice and elec-
tron heat fluxes [9-11]. 

In this paper the thermal processes proceeding in the micro-domains are ana-
lyzed using the fuzzy lattice Bolzmann method [12, 13]. The heat transfer problems 
are usually solved assuming that the equations appearing in the mathematical 
model and all parameters in these equations are deterministic. Such an assumption 
does not give an exact image of the thermal processes met in the engineering prac-
tice. It seems more natural to take into account uncertainties related, for example, 
to the material parameters. Here, the fuzzy lattice Bolzmann method is presented 
using the α-cuts of fuzzy numbers with the approach of the directed interval arith-
metic [14]. The interval values of relaxation times and boundary conditions are 
taken into account. The application of α-cuts allows one to avoid very complicated 
arithmetical operations in the fuzzy numbers set because the α-cuts are closed 
intervals. In this case, the mathematical operations are defined according to the 
rules of the directed interval arithmetic performed for every α-cut, which is treated 
as an interval number. In this arithmetic, a set of proper intervals is extended by 
improper intervals, and all arithmetic operations and functions are also extended. 
The main advantage of the directed interval arithmetic upon the usual interval 
arithmetic is that the obtained temperature intervals are much narrower and their 
width does not increase in time. 

2. Boltzmann transport equation 

During the heating of thin metal films via laser pulse the electrons are energized 
and they subsequently transfer the energy to phonons via coupling between them. 
The Boltzmann transport equations for the coupled model (1D problem) with two 
kinds of carriers: electrons (e) and phonons (ph) take the following form [15]: 
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where ,e phf f  are the carrier distribution functions, 0 0,e phf f  are the equilibrium 

distribution functions given by the Bose-Einstein statistic for phonons [16] and 
Fermi-Dirac statistic for electrons [17], ,e phv v  are the frequency-dependent 

carrier propagation speeds, ,e phτ τ  are the frequency-dependent carrier relaxation 

times and ,e phg g  are the carrier generation rates due to external sources such 

as laser heating. 
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The BTEs (1) and (2) can be transformed into equivalent carrier energy density 
equations [15] 
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where ,e phe e  are the carrier energy densities, 0 0,e phe e  are the equilibrium carrier 

energy densities and ,e phQ Q  are the carrier energy sources related to a unit of 

volume. The equations (3) and (4) must be supplemented by the adequate boundary- 
-initial conditions. 

The electron and phonon energy densities at their equivalent nonequilibrium 
temperatures are given by the formulas 
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where ,e phT T  are the carrier temperatures, kb is the Boltzmann constant, Fε  is the 

Fermi energy, en  is the electron density, Θ D is the Debye temperature of the solid, 

η  is the number density of oscillators [15]. 
The electron and phonon energy sources are calculated using the following 

expressions [15]: 

  ( )e e phQ Q G T T′= − −  (7) 

  ( )ph e phQ G T T= −  (8) 

where Q′  is the power density deposited by the external source function associated 
with the laser irradiation [18] and G is the electron-phonon coupling factor which 
characterizes the energy exchange between electrons and phonons. 

3. Fuzzy numbers 

The ground of the mathematical rules used in this paper is given by the fuzzy 
set theory. This approach is not common in solving heat transfer problems and that 
is why some of the definitions used in this concept must be explained [19]. 
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First of all, the definition of a fuzzy set will be introduced. The fuzzy set Aɶ  in 

a non empty universal set X  (A ⊆ɶ X) can be expressed by a set of pairs consisting 
of the elements x∈X  and a certain degree of pre-assumed membership 

A
( )xµ ɶ  

of the form 

 ( ){ }A
A , ( ) ;x x xµ= ∈ɶ
ɶ X  (9) 

where function 
A

( )xµ ɶ  is defined as 

 [ ]A
: 0, 1µ →ɶ X  (10) 

In fuzzy sets, each element is mapped to [0,1] by membership function 
A

( )xµ ɶ , 

where [0,1] means real numbers between 0 and 1 (including 0,1). Consequently, 
a fuzzy set is a ‘vague boundary set’ compared with a crisp set. 

For every x∈X  can be considered three types of membership to the fuzzy  
set Aɶ : 
• 

A
( ) 1xµ =ɶ  - full membership to the fuzzy set, Ax∈ ɶ , 

• 
A

( ) 0xµ =ɶ  - lack of membership to the fuzzy set, Ax∉ ɶ , 

• 
A

0 ( ) 1xµ< <ɶ  - partial membership to the fuzzy set. 

The α-cut set Aɶ  in universal set X   is made up of members whose membership 
is not less than α for every [ ]0, 1α ∈ [20] 
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The value α is arbitrary and this α-cut set is a crisp set. This set is determined by 
the following characteristic function: 
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Every fuzzy set Aɶ  can be defined as a sum of all its α-cuts 
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where Aαα ⋅ ɶ  is a fuzzy set in the universe ,X whose membership function is the 
following: 
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Arithmetical operations are generally very complicated. Among the infinite 
quantity of possible fuzzy sets that can be qualified as fuzzy numbers, some types 
of membership functions are of particular importance. 

Due to its rather simple membership function of a linear type, triangular fuzzy 
numbers are one of the most frequently used fuzzy numbers. In this paper the 
triangular fuzzy numbers will be used to solve the Boltzmann transport equations 
specified for various mathematical models. 

A triangular fuzzy number aɶ  is a set with the following membership function [21]: 
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where 0a  is the core of the number, ,a a− +  are the left and the right end of the 
number, respectively. A triangular fuzzy number can be written as ( )0, ,a a a a

− +=ɶ . 

One of the ways to avoid very complicated arithmetic operations performed on 
fuzzy numbers is to apply α-cuts of fuzzy numbers. In this case, the mathematical 
operations are defined according to the rules of the directed interval arithmetic 
performed for every α-cut. 

The α-cut of a fuzzy number aɶ  defined by a pair of functions [ ]: 0, 1a− →R  

and [ ]: 0, 1a+ → R  is called a set of closed intervals [22] 

 [ ]0, 1 ,a a aα α αα − + ∀ ∈ =  ɶ  (16) 

which satisfies the following conditions 
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where a− ( a+ ) is a limited, monotonic function for every [ ]0, 1 .α ∈  

Every fuzzy number can be presented as a sum of all its own α-cuts 
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The α-cut of a triangular fuzzy number ( )0, ,a a a a− +=ɶ  is the set of all closed 

intervals in the form 

 [ ] ( ) ( )0 00, 1 ,a a a a a a aαα α α− − + + ∀ ∈ = − + − + ɶ  (19) 

The decomposition of a fuzzy number allows one to make the mathematical 
operations on closed intervals which are α-cuts. In this situation, complicated 
arithmetic operations can be omitted and it is possible to apply the interval arithme-
tic for every α-cut. The mathematical operations are simplified, because they are 
done only on the ends of the intervals. 

For the α-cuts of two fuzzy numbers aɶ  and ,bɶ  the following mathematical 
operations can be defined ( [ ]0, 1α∀ ∈ ) [22]: 

– addition 
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– multiplication by a scalar (k∈R) 
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Applying α-cuts of the fuzzy numbers allows one to use directed interval 
arithmetic [13, 23]. 
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4. Fuzzy lattice Boltzmann method 

The lattice Boltzmann method is a discrete representation of the Boltzmann 
transport equations. The fuzzy form of the BTEs for 1D problems can be expressed 
as [24] 
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where ,e phe eɶ ɶ  are the fuzzy values of carrier energy densities for electrons and 

phonons, respectively, 0 0,e phe eɶ ɶ  are the fuzzy equilibrium carrier energy densities 

and ,e phτ τɶ ɶ are the fuzzy relaxation times. 

The fuzzy values of the electron and phonon energy sources are calculated using 
the following formulas according to the rules of directed interval arithmetic [25] 

  ( )e e phQ Q G T T′= − −ɶ ɶ ɶ  (28) 

  ( )ph e phQ G T T= −ɶ ɶ ɶ  (29) 

where G is the electron-phonon coupling factor. 
For the one-dimensional model the discrete set of propagation velocities in two 

lattice directions (1 and 2) for electrons and phonons is defined as (see Fig. 1) 

 1 2[ , 0] [ , 0]e e e ec c= = −v v  (30) 

 1 2[ , 0] [ , 0]ph ph ph phc c= = −v v  (31) 

 
Fig. 1. One-dimensional 2-speed lattice Boltzmann model 

The equations (26) and (27) should be supplemented by the boundary conditions 
[12], for example of the 1st type on the left boundary and the 2nd type on the right 
boundary as follows: 
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and the initial conditions 
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where 2
e
bTɶ  and 2

ph
bTɶ  are the fuzzy values of boundary temperatures of electrons and 

phonons respectively, ( )
0eTɶ and ( )

1eTɶ  are the fuzzy temperatures of electrons in the 

first and second node, ( )
0phTɶ  and ( )

1phTɶ  are the fuzzy temperatures of phonons 

in the first and second node, 0
eT  is the electron’s initial temperature and 0

phT  is 
the phonon’s initial temperature. 

Taking into account equations (30) and (31), the set of four fuzzy partial differ-
ential equations is obtained 
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Introducing discretizing form, time and position derivatives may be written 
as follows [13]: 
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The total energy density for electrons and phonons is defined as the sum of 
discrete energy densities in all the lattice directions and takes the form  
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The equilibrium electron energy density and phonon energy density is the same 
in all lattice directions and can be calculated using the formula [26] 
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After subsequent computations the fuzzy lattice temperature is determined using 
the formula 
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5. Numerical examples 

As a numerical example the heat transport in a gold thin film of the dimensions 
200 nm has been analyzed. The following input data have been introduced: 
the relaxation time ( )0.038, 0.04, 0.042 ps,reτ =ɶ ( )0.76, 0.8, 0.84 ps,rphτ =ɶ  the Debye 

temperature 170 K,DΘ =  the coupling factor G = 2.3·1016 W/(m3K), the external 
heat source 20 310 W/m ,Q′ =  the fuzzy boundary conditions of the 1st type on the 
left boundary ( )1 1 285, 300, 315 Ke ph

b bT T= =ɶ ɶ  and the 2nd type on the right bound- 

ary 2 2 0,e ph
b bq q= = ɶɶ ɶ  the initial temperature 0 300K.T =  The lattice step 20 nmx∆ =  

and the time step 0.01pst∆ =  have been assumed. 
Figures 2 and 3 illustrate the fuzzy temperature distribution of electrons in the 

thin gold film for the chosen times and chosen values of parameter α. Figure 4 pre-
sents the interval values of temperatures for the chosen parameter α at the node 
corresponding to the depth of 60 nm after 0.2 ps. 

In the Figures 5 and 6 the heating curves at the internal nodes 1 (40 nm), 
2 (60 nm) and 3 (80 nm) for chosen values of the parameter α are shown. 
 

 
Fig. 2. The fuzzy temperature distribution for α = 0 

 
Fig. 3. The fuzzy temperature distribution for α = 0.75 
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Fig. 4. The interval values of temperatures for the chosen parameter α 

at the node 60 nm after 0.2 ps 

 

Fig. 5. Heating curves for α = 0.75 at the chosen nodes 

 

Fig. 6. Heating curves for α = 0.25 at the chosen nodes 
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6. Conclusions 

In the paper the Boltzmann transport equation with the fuzzy values of the relaxa- 
tion times and the boundary conditions has been considered. The fuzzy version 
of the lattice Boltzmann method with α-cuts for solving 1D problems has been 
presented. 

Such an approach allows one to avoid complicated fuzzy arithmetic and treat 
the considered fuzzy numbers as interval numbers. For bigger values of α, the tem-
perature interval is narrower. For α = 1, the wideness of the temperature interval 
is equal to 0. 

The generalization of LBM allows one to find  the numerical solution in the 
fuzzy form and such information may be important especially for the parameters 
which are estimated experimentally, for example the relaxation time. 
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