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Abstract. In this paper we consider O-species and their representations. These O-species
are a type of a generalization of a species introduced by Gabriel. We also consider the
tensor algebras of such O-species. It is proved that the category of all representations
of an O-species and the category of all right modules over the corresponding tensor algebra
are naturally equivalent.
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1. Introduction

In this paper we consider O-species, which generalize the notion of species
introduced by Gabriel in [1]. Recall this definition:

Definition 1.1. (Gabriel [1]). Let / be a finite index set. A species L = (F}, M), <
is a finite family (F)); c ; of division rings together with a family (;4);; < ; of
(£}, F))-bimodules.

We say that (F, ;M)),;; is a K-species if all F; are finite dimensional and
central over the common commutative subfield K which acts centrally on ;M i.e.
Am=mA for all A € K and all m € ;M;. We also assume that each bimodule ;M4
is a finite dimensional vector space over K. K-species is a K-quiver if F;=K
for each i.

Definition 1.2. A representation (V, ;) of a species L = (F}, M,);; < ; (or an
L-representation) is a family of right /;-modules V; and F-linear mappings:

J0 VO M, >V, (1.3)

for each i, j € I. Such a representation is called finite dimensional, provided all
the spaces V; are finite dimensional vector spaces.
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Let V=V, ;¢ )and W= (W, Wi ) be two L-representations. An L-morphism ¥:

V — W is a set of Fi-linear maps o, : V; & W, such that
j‘/lt(at®1)=aj'j§01 (14)

Two representations (V}, ;@) and W = (W,, ;y;) are called equivalent if there
is a set of isomorphisms ¢; from the F;-module V; to the Fi-module W; such that
the (1.4) holds for all i,j € L.

A representation (V;, ;¢,) is called indecomposable, if there are no non-zero
sets of subspaces (U;) and (W;) such that V; = U, ® W, and ;¢ = ;y; @ ;7;, where

Wi U ® M; > U, (1.5)
W@ M, > W, (1.6)
One defines the direct sum of two L-representations in the obvious way.

Denote by Rep(L) the category of all L-representations, and by rep(L) the cate-
gory of finite dimensional L-representations, whose objects are L-representations
and whose morphisms are as defined above.

Definition 1.7. [2] A species L = (F}, M));;e; is said to be of finite type, if the
number of indecomposable non-isomorphic finite dimensional representations is
finite.

A species L =(Fj, ;M),;c; is said to be of strongly unbounded type if it
possesses the following three properties:

1. L has indecomposable objects of arbitrary large finite dimension.

2. If L contains a finite dimensional object with an infinite endomorphism ring,
then there is an infinite number of (finite) dimensions d such that, for each d,
the species L has infinitely many (non-isomorphic) indecomposable objects
of dimension d.

3. L has indecomposable objects of infinite dimension.

Dlab and Ringel proved in [2, Theorem E] that any K-species is either of finite
or of strongly unbounded type.

With any species L = (F}, ;M,),;; one can define the tensor algebra in the follow-
ing way. Let B=HF,-, and let M =@ ,;M,. Then B is a ring and M naturally

iel i,jel

becomes a (B, B)-bimodule. The tensor algebra of the (B, B)-bimodule M is the
graded ring
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T(L):TB(M)zéM®" (1.8)

n=0

with component-wise addition and the multiplication induced by taking tensor
products.

If L is a K-species, then 7(L) is a finite dimensional K-algebra.

Theorem 1.9. (Dlab, Ringel [2, Proposition 10.1]). Let L be a K-species. Then the
category Rep(L) of all representations of L and the category Mod,(7(L)) of all right
T(L)-modules are equivalent.

2. O-species and their representations

In this section we consider the notion of O-species, which generalizes the notion
of species considered in [1].

Let {O;} be a family of discrete valuation rings (not necessarily commutative)
O, with radicals R; and skew fields of fractions D;, for i=1,2, ..., k, and let {D,},
forj=k+ 1, .., n, be a family of skew fields. Let (#, n,, ..., 1;) be a set of natural
numbers. Write

O, 0 - G

R O - O
Hn,(()i): :’ :’ :’ >

R R - O

which is a subring in the matrix ring M, (D;). It is easy to see that each H, (O,)
is a Noetherian serial prime hereditary ring. Write F; = H, (0) fori=1,2, ..k,
and F; = D, forj =k + 1, ..., n. Then, by the Goldie theorem, there exists a classical
ring of fractions F; fori=1,2, ..., n.

Consider the following generalization of a species.

Definition 2.1. An O-species is a set Q= (F;, M), . , where F;= Hn,- (0,) for
i=1,2,..,k and F;=D; for j=k + 1,..,n, and moreover ;M; is an (F",,F;)—
bimodule, which is finite dimensional as a right D-vector space and as a left
D; -vector space.

An O-species Q is called a (D, O)-species if all O; have a common skew field
of fractions D, i.e. all D; are equal to a fixed skew field D and
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(M )y =(pDp)" (2.2)
for some natural number n; (i =1, 2, ..., n).

An O-species Q is called a (K, O)-species, if all D; (i = 1, 2, ..., n) contain
a common central subfield K of finite index in such a way that Am = mA for all
A € K and all m € ;M; (moreover, each bimodule ;1 is a finite dimensional vector
space over K). It is a (K, O)-quiver if moreover D; = D for each i.

Everywhere in this paper we will consider O-species without oriented cycles
and loops, i.e. we will assume that ,M; = 0, and if ;M # 0, then M, = 0. A vertex i
is said to be marked if ;= H, (O,).

We will also assume that all marked vertices are minimal, i.e. M;=0 if
Fi=H, (0,), and that ;M;=M; = 0 if i, j are marked vertices.

Definition 2.3. The diagram of an O-species Q = {F), ;M;},,c; is defined in the
following way:

1. The set of vertices is a finite set /= {1, 2, ..., n}.

2. The finite subset I, = {1, 2, ..., k} of I is a set of marked points.

3. The vertex i connects with the vertex j by #; arrows, where

L =nidimD(,Mj)>< dim(;M ), +nidimD(/M,)>< dim(; M),

! J

moreover, we assume that n; =1 if F; = D,.

Similar to species we can define representations of O-species in the following
way.

Definition 2.4. A representation (M, V,, ;¢ ;) of an O-species Q = {F}, M}, e

is a family of right Fi-modules M; (i = 1,2, ..., k), a set of right vector spaces V,
over D, (r=k+1, k+1, ..., n) and D;-linear maps:

9 M @ M,
foreachi=1,2, .. kj=k+1,k+2, ..., n; and

iV v, ®Dr VMJ - VJ
foreachr,j=k+1,k+2, ... n.

Definition 2.5. Two representations M= (M, V.., ;¢ ;) and M'=(M,V/, o/, )

are called equivalent if there is a set of isomorphisms ¢; of F;-modules from M; to
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M| and a set of isomorphisms £, of D,-vector spaces from V, to ¥, such that for
eachi=1,2, ..., kr,j=k+1,k+2, .., nthe following equalities hold:

J ¢;(al ® 1) = ﬁ_/’"/ i (26)

W (B.®) =By, 2.7

In a natural way one can define the notions of a direct sum of representations
and of an indecomposable representation.

The set of all representations of an O-species Q = (F}, ;M,);;c; can be turned
into a category R(QQ), whose objects are representations M = (M, V., ;,¢,, ;y»), and
a morphism from object M = (M, V., ;¢ ;y%) to object M'=(M],V/, ¢/, y,) is
a set of homomorphisms ¢ of H, (O,) - modules M, to M/, and a set of homo-

morphisms S, of D, - vector spaces from V, to V7, such that for each i= 1,2, ..., k;
r,j=k+1,k+2, .., nthe equalities (2.6) and (2.7) hold.

3. Tensor algebra of O-species

For any O-species Q = (F}, ;M,));; - ; one can construct a tensor algebra of bimod-

ules 7(Q2). Let A=@F;, B=@),;M,. Then B is an (4, A) - bimodule and we can
i=1 i,j

define a tensor algebra 74(B) of the bimodule B over the ring 4 in the following

way:

T(B)=A®B®B'®..®B' D ... 3.1

is a graded ring, where B" = B ®, B" ! for n >1, and multiplication in 74(B) is
given by the natural 4-bilinear map:

B'xB"—>B'®,B"=B"" 3.2)
Then T(Q) = T4(B) is the tensor algebra corresponding to an O-species Q.

Proposition 3.3. Let Q be an O-species. Then the category R (QQ) of all representa-
tions of Q and the category Mod, 7(Q) of all right 7(Q)-modules are naturally
equivalent.

Proof. Form two functors R: Mod, 7(QQ) > R (Q) and P: R(Q) > Mod, T(Q)
in the following way. Let Xjq) be a right 7(Q2)-module. Since 4 is a subring
in 7(€), X can be considered as a right A-module. Then
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Xz(éM,j@[é-) V,j, (3.4)
i=1 r=k+1

where M, is an H, (0,)-module, and V, is a D,-vector space; moreover,
MH, (0,)=0 for i #j, and V.D; = 0 for r # 5. Since B is an (4, 4)-bimodule, one

can define an A-homomorphism ¢ : X ® , B — X,. Taking into account that
M, ® 4 M; =0 for i+ s, the map ¢ is defined in the following way:

k n n
cor(G-D(M, ®A,M,)j@[ @, ®Aer>j» @7, (3.5)

i=1 r=k+1 r=k+l

Since M; ® 4 ;M; is mapping into V}, and V, ® , .M, is mapping into V;, ¢ defines
a set of D;-homomorphisms:

M@ M =M ®, M,V (3.6)

J
WV M=V, 8, M, >V, 3.7
fori=1,2,.,krj=k+1,..n

Now one can define R(Xyq) = (M, V. ;0. ;y4). Let X, Y be two right
T(€2)-modules, let o.: X — Y be a homomorphism, and let R(X) = (M,, V., ;@, ;¥4),
R(Y) = (N..W,,,9,,;¥,). Let's define a morphism from R(X) to R(Y). Since «
is an A-homomorphism, aAM)c N;, aAV,)c W,, ie., «a defines a family of
H, (0,)-homomorphisms ¢;: M;— N; and a family of D,-homomorphisms f:

V. — W,, which are the restrictions of o to M, and V,. Therefore one can set
R(e) = {(), ()} Since a is a T(Q2)-homomorphism,

jg’b;(al®1)=aj‘j¢l (38)
and

jlr?jr(lgr@l):ﬁj'j l//r (39)

fori=1,2,..,k r,j=k+ 1, .., n Therefore R(@) is a morphism in the category
R(Q).

Conversely, let Q = (F}, ;M,),;; and there is given a representation M = (M,, V,,
;@i jW). Then one can define P(M) in the following way:

P(M)=X=[éM,J@( @ Vr} (3.10)
i=1

r=k+1
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We define an action of

Az[éHn‘(O,)J(-B(é—)D,j (3.11)
i=1

r=k+1

on M; by means of the projection 4 — H, (0;) and an action of 4 on V, by means

of the projection 4 — D,. We define an action of B” on X by induction of
¢ : X®,B" — X as follows:

k n
¢(1) :®‘/¢i@./wr X®A B:[G_)(M] ®A IM/))@( @ (VV ®A rM/)j:
L =1

r=k+1

k n n
{@ (M, ®H7,‘(01),.M])J® ( PV, e, M, )J—> PV, cX

i=1 r=k+1 r=k+1

" ®1

4
o' =" ®1): X®, B" =(X®,B)®,B" 3y X®,B 3 X

If o = {{a}, {B}} is a morphism of a representation M = (M, V,, ;¢ ,y4) to
arepresentation M'=(M. V!, ¢/, ,w,), X=P(M),Y=P(M"), then
goz@a,@ﬁ,:Xz(-BM,.@V,%@M,’@V; (3.12)

is a 7(Q)-homomorphism and therefore P(c) = ¢.

It is not difficult to show that R, P are mutually inverse functors and they give
an equivalence of categories Mod; 7(Q2) and R (Q).

Recall that an Artinian ring A is of finite representation type if 4 has only
a finite number of indecomposable finitely generated right 4-modules up to iso-
morphism.

A ring A is of (right) bounded representation type (see [3, 4]) if there is an
upper bound on the number of generators required for indecomposable finitely pre-
sented right 4-modules.

Denote by (M;) the minimal number of generators of an H, (O,)-module
M, and denote by d,=dim, (V,) the dimension of vector space V, over D,.
The dimension of a representation M = (M,, V,, ;¢,, ;i) is the number

dzdimMzzn:,u(M,-)Jr id, (3.13)

i=1 r=k+1
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Definition 3.14. An O-species Q is said to be of bounded representation type
if the dimensions of its indecomposable finite dimensional representations have
an upper bound.

Corollary 3.15. An O-species Q2 is of bounded representation type if and only
if the tensor algebra 7(Q) is of bounded representation type.

Proof. If Q) is an O-species of bounded representation type, then there exists N > 0
such that dimM < N for any indecomposable finite dimensional representation M.
Then for any finitely generated 7(Q)-module X we have w(X) < N;, where N, is
some fixed number depending on N, i.e. T(QQ) is a ring of bounded representation
type. The converse also holds: if 7(Q) is a ring of bounded representation type,
then Q is an O-species of bounded representation type.

Corollary 3.16. Let Q; be a D-species, which is a subspecies of a (D, O)-species
Q. If Q3 is of bounded representation type, then Q, is of finite type.

Proof. Since Q is of bounded representation type, each of its subspecies is of
bounded representation type as well. So Q; is of bounded representation type, and,
by corollary 3.15, its tensor algebra is of bounded representation type, as well.
Since Q) is a D-species, its tensor algebra is an Artinian ring. So it is of finite rep-
resentation type, by [5]. Therefore, Q) is also of finite representation type.

3. Conclusion

In this paper we introduced O-species and the tensor algebras corresponding
to them. These O-species are some generalizations of species first introduced by
Gabriel in [1]. We consider the notion of a representation of an O-species. In this
paper we prove that the category of all representations of O-species (2 and the cat-
egory of all right modules over a tensor algebra T(Q) are naturally equivalent.
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