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Abstract. In this paper we consider O-species and their representations. These O-species 

are a type of a generalization of a species introduced by Gabriel. We also consider the 

tensor algebras of such O-species. It is proved that the category of all representations 

of an O-species and the category of all right modules over the corresponding tensor algebra 

are naturally equivalent. 

 

Keywords: species, O-species, representations of O-species, tensor algebra, O-species of 

bounded representation type, diagram of O-species 

1. Introduction 

In this paper we consider O-species, which generalize the notion of species 

introduced by Gabriel in [1]. Recall this definition: 

 

Definition 1.1. (Gabriel [1]). Let I be a finite index set. A species L = (Fi, iMj)i,j ∈ I 

is a finite family (Fi)i ∈ I of division rings together with a family (iMj)i,j ∈ I of 

(Fi, Fj)-bimodules. 

We say that (Fi, iMj)i,j ∈ I is a K-species if all Fi are finite dimensional and 

central over the common commutative subfield K which acts centrally on iMj, i.e. 

λm = mλ for all λ ∈ K and all m ∈ iMj. We also assume that each bimodule iMj 

is a finite dimensional vector space over K. K-species is a K-quiver if Fi = K 

for each i. 

 

Definition 1.2. A representation (Vi, jϕi) of a species L = (Fi, iMj)i,j ∈ I (or an 

L-representation) is a family of right Fi-modules Vi and Fj-linear mappings: 

 jjiFiij VMV
i

→⊗:ϕ  (1.3) 

for each i, j ∈ I. Such a representation is called finite dimensional, provided all 

the spaces Vi are finite dimensional vector spaces. 
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Let V = (Vi, jϕi ) and W = (Wi, ijψ ) be two L-representations. An L-morphism Ψ: 

V → W is a set of Fi-linear maps αi : Vi → Wi such that 

 ijjiij ϕααψ ⋅=⊗ )1(  (1.4) 

Two representations (Vi, jϕi) and W = (Wi, jψi) are called equivalent if there 

is a set of isomorphisms αi from the Fi-module Vi to the Fi-module Wi such that 

the (1.4) holds for all i,j ∈ I. 

 

A representation (Vi, jϕi) is called indecomposable, if there are no non-zero 

sets of subspaces (Ui) and (Wi) such that Vi = Ui ⊕ Wi and jϕi = jψi ⊕ jτi , where 

 jjiFiij UMU
i

→⊗:ψ  (1.5) 

 jjiFiij WMW
i

→⊗:τ  (1.6) 

One defines the direct sum of two L-representations in the obvious way. 

 

Denote by Rep(L) the category of all L-representations, and by rep(L) the cate-

gory of finite dimensional L-representations, whose objects are L-representations 

and whose morphisms are as defined above. 

 

Definition 1.7. [2] A species L = (Fi, iMj)i,j∈I is said to be of finite type, if the  

number of indecomposable non-isomorphic finite dimensional representations is 

finite. 

A species L = (Fi, iMj)i,j∈I is said to be of strongly unbounded type if it 

possesses the following three properties: 

1. L has indecomposable objects of arbitrary large finite dimension. 

2. If L contains a finite dimensional object with an infinite endomorphism ring, 

then there is an infinite number of (finite) dimensions d such that, for each d, 

the species L has infinitely many (non-isomorphic) indecomposable objects 

of dimension d. 

3. L has indecomposable objects of infinite dimension. 

 

Dlab and Ringel proved in [2, Theorem E] that any K-species is either of finite 

or of strongly unbounded type. 

 

With any species L = (Fi, iMj)i,j∈I one can define the tensor algebra in the follow-

ing way. Let ∏
∈

=

Ii

i
FB , and let ji

Iji

MM ⊕
∈

=

,

. Then B is a ring and M naturally 

becomes a (B, B)-bimodule. The tensor algebra of the (B, B)-bimodule M is the 

graded ring 
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n

n

B
MMTLT

⊗

∞

=

⊕==

0

)()(  (1.8) 

with component-wise addition and the multiplication induced by taking tensor 

products. 

 

If L is a K-species, then T(L) is a finite dimensional K-algebra. 

 

Theorem 1.9. (Dlab, Ringel [2, Proposition 10.1]). Let L be a K-species. Then the 

category Rep(L) of all representations of L and the category Modr(T(L)) of all right 

T(L)-modules are equivalent. 

2. O-species and their representations 

In this section we consider the notion of O-species, which generalizes the notion 

of species considered in [1]. 

 

Let {Oi} be a family of discrete valuation rings (not necessarily commutative) 

Oi with radicals Ri and skew fields of fractions Di, for i = 1, 2, ..., k, and let {Dj}, 

for j = k + 1, ..., n, be a family of skew fields. Let (n1, n2, ..., nk) be a set of natural 

numbers. Write  

 



















=

iii

iii

iii

in

ORR

OOR

OOO

OH
i

⋯

⋮⋱⋮⋮

⋯

⋯

)( ,  

which is a subring in the matrix ring )(
in

DM
i

. It is easy to see that each )(
in
OH

i
 

is a Noetherian serial prime hereditary ring. Write Fi = )( in OH
i

 for i = 1, 2, ..., k, 

and Fj = Dj for j = k + 1, ..., n. Then, by the Goldie theorem, there exists a classical 

ring of fractions iF
~
 for i =1,2, ..., n. 

 

 Consider the following generalization of a species. 

 

Definition 2.1. An O-species is a set Ω = (Fi, iMj)i,j ∈ I, where Fi = )(
in
OH

i
 for 

i = 1, 2, ..., k, and Fj = Dj for j = k + 1, ..., n, and moreover iMj is an )
~

,
~

( ji FF -

bimodule, which is finite dimensional as a right Dj-vector space and as a left 

Di -vector space. 

An O-species Ω is called a (D, O)-species if all Oi have a common skew field 

of fractions D, i.e. all Di are equal to a fixed skew field D and 
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 ijn

DDDjiD DM )()( ≅  (2.2) 

for some natural number nij (i = 1, 2, ..., n). 

 

An O-species Ω is called a (K, O)-species, if all Di (i = 1, 2, ..., n) contain 

a common central subfield K of finite index in such a way that λm = mλ for all 

λ ∈ K and all m ∈ iMj (moreover, each bimodule iMj is a finite dimensional vector 

space over K). It is a (K, O)-quiver if moreover Di = D for each i. 

 

Everywhere in this paper we will consider O-species without oriented cycles 

and loops, i.e. we will assume that iMi = 0, and if iMj ≠ 0, then jMi = 0. A vertex i 

is said to be marked if Fi = )(
in
OH

i
. 

We will also assume that all marked vertices are minimal, i.e. jMi = 0 if 

Fi = )( in OH
i

, and that iMj = jMi = 0 if i, j are marked vertices. 

 

Definition 2.3. The diagram of an O-species Ω = {Fi, iMj}i,j∈I is defined in the 

following way: 

1. The set of vertices is a finite set I = {1, 2, ..., n}. 

2. The finite subset I0 = {1, 2, ..., k} of I is a set of marked points. 

3. The vertex i connects with the vertex j by tij arrows, where 

DijijD

j

DjijiD

i

ij MM
n

MM
n

t )dim()(dim
1

)dim()(dim
1

×+×=  

moreover, we assume that ni = 1 if Fi = Di. 

 

Similar to species we can define representations of O-species in the following 

way. 

 

Definition 2.4. A representation (Mi, Vr, jϕi, jψr) of an O-species Ω = {Fi, iMj}i,j∈I 

is a family of right Fi-modules Mi (i = 1, 2, ..., k), a set of right vector spaces Vr 

over Dr (r = k +1, k +1, ..., n) and Dj-linear maps: 

jjiFiij VMM
i

→⊗:ϕ  

for each i = 1, 2, ..., k; j = k +1, k +2, ..., n; and 

jjrDrrj VMV
r

→⊗:ψ  

for each r, j = k +1, k +2, ..., n. 

 

Definition 2.5. Two representations M = (Mi, Vr, jϕi, jψr) and ),,,( rjijri VMM ψϕ ′′′′=′  

are called equivalent if there is a set of isomorphisms αi of Fi-modules from Mi to 
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i
M ′  and a set of isomorphisms βr of Dr-vector spaces from Vr to r

V ′  such that for 

each i = 1, 2, ..., k; r, j = k + 1, k + 2, ..., n the following equalities hold: 

 ijjiij ϕβαϕ ⋅=⊗′ )1(  (2.6) 

 rjjrrj ψββψ ⋅=⊗′ )1(  (2.7) 

In a natural way one can define the notions of a direct sum of representations 

and of an indecomposable representation. 

 

The set of all representations of an O-species Ω = (Fi, iMj)i,j∈I can be turned 

into a category R(Ω), whose objects are representations M = (Mi, Vr, jϕi, jψr), and 

a morphism from object M = (Mi, Vr, jϕi, jψr) to object ),,,( rjijri VMM ψϕ ′′′′=′  is 

a set of homomorphisms αi of )(
in
OH

i
 - modules Mi to i

M ′ , and a set of homo- 

morphisms βr of Dr - vector spaces from Vr to r
V ′  such that for each i = 1,2, ..., k; 

r, j = k + 1, k + 2, ..., n the equalities (2.6) and (2.7) hold. 

3. Tensor algebra of O-species 

For any O-species Ω = (Fi, iMj)i,j ∈ I one can construct a tensor algebra of bimod-

ules T(Ω). Let 
i

n

i

FA ⊕
=

=

1

, ji

ji

MB ⊕=
,

. Then B is an (A, A) - bimodule and we can 

define a tensor algebra TA(B) of the bimodule B over the ring A in the following 

way: 

 TA(B) = A ⊕ B ⊕ B
2
 ⊕ ... ⊕ B

n
 ⊕ ... (3.1) 

is a graded ring, where B
n
 = B ⊗A B

n‒1
 for n > 1, and multiplication in TA(B) is  

given by the natural A-bilinear map: 

 B
n
 × B

m
 → B

n
 ⊗A B

m 
= B

n+m
 (3.2) 

Then T(Ω) = TA(B) is the tensor algebra corresponding to an O-species Ω. 

 

Proposition 3.3. Let Ω be an O-species. Then the category ℜ (Ω) of all representa-

tions of Ω and the category Modr T(Ω) of all right T(Ω)-modules are naturally 

equivalent. 

 

Proof. Form two functors R: Modr T(Ω) → ℜ (Ω) and P: ℜ (Ω) → Modr T(Ω) 

in the following way. Let XT(Ω) be a right T(Ω)-module. Since A is a subring 

in T(Ω), X can be considered as a right A-module. Then 
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


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r

n

kr

i

k

i

VMX  (3.4) 

where Mi is an )(
in
OH

i
-module, and Vr is a Dr-vector space; moreover, 

0)( =jni OHM
j

 for i ≠ j, and VrDs = 0 for r ≠ s. Since B is an (A, A)-bimodule, one 

can define an A-homomorphism ϕ : X ⊗ A B → XA. Taking into account that 

Mi ⊗ A sMj = 0 for i ≠ s, the map ϕ is defined in the following way: 

 r

n

kr

jrAr

n

kr

jiAi

k

i

VMVMM ⊕⊕⊕
+=+==

→







⊗⊕








⊗

111

)()(:ϕ  (3.5) 

Since Mi ⊗ A iMj is mapping into Vj, and Vr ⊗ A rMj is mapping into Vj, ϕ defines 

a set of Dj-homomorphisms: 

 jjiHijiAiij VMMMM
iOin

→⊗=⊗
)(

:ϕ  (3.6) 

 jjrDrjrArrj VMVMV
r

→⊗=⊗:ψ  (3.7) 

for i = 1, 2, ..., k; r, j = k + 1, ..., n. 

 

Now one can define R(XT(Ω)) = (Mi, Vr, jϕi, jψr). Let X, Y be two right 

T(Ω)-modules, let α: X → Y be a homomorphism, and let R(X) = (Mi, Vr, jϕi, jψr), 

R(Y) = )~,~,,( rjijri WN ψϕ . Let's define a morphism from R(X) to R(Y). Since α 

is an A-homomorphism, α(Mi) ⊆ Ni, α(Vr) ⊆ Wr, i.e., α defines a family of 

)(
in
OH

i
-homomorphisms αi: Mi → Ni and a family of Dr-homomorphisms βr: 

Vr → Wr, which are the restrictions of α to Mi and Vr. Therefore one can set 

R(α) = {(αi), (βr)}. Since α is a T(Ω)-homomorphism, 

 ijjiij ϕααϕ ⋅=⊗ )1(~  (3.8) 

and 

 rjjrrj ψββψ ⋅=⊗ )1(~  (3.9) 

for i = 1, 2, ..., k; r, j = k + 1, ..., n. Therefore R(α) is a morphism in the category 

R(Ω). 
 

Conversely, let Ω = (Fi, iMj)i,j∈I and there is given a representation M = (Mi, Vr, 

jϕi, jψr). Then one can define P(M) in the following way: 

 .)(
11
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We define an action of 
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)(  (3.11) 

on Mi by means of the projection A → )( in OH
i

 and an action of A on Vr by means 

of the projection A → Dr. We define an action of B
n
 on X by induction of  

ϕ
 (n)
 : X ⊗A B

n
 → X as follows: 

1

1 1

k n
( )

j i j r A i A i j r A r j
i , j j ,r i r k

: X B ( M M ) (V M )ϕ ϕ ψ

= = +
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If α = {{αi}, {βr}} is a morphism of a representation M = (Mi, Vr, jϕi, jψr) to 

a representation ),,,( rjijri VMM ψϕ ′′′′=′ , X = P(M), Y = P(M ′ ), then  

 
r

r

i

i

r

r

i

i

r

r

i

i

VMVMX ′′→== ⊕⊕⊕⊕⊕⊕ :βαϕ  (3.12) 

is a T(Ω)-homomorphism and therefore P(α) = ϕ. 

 

It is not difficult to show that R, P are mutually inverse functors and they give 

an equivalence of categories Modr T(Ω) and ℜ (Ω). 

 

Recall that an Artinian ring A is of finite representation type if A has only 

a finite number of indecomposable finitely generated right A-modules up to iso-

morphism. 

A ring A is of (right) bounded representation type (see [3, 4]) if there is an 

upper bound on the number of generators required for indecomposable finitely pre-

sented right A-modules.  

 

Denote by µ(Mi) the minimal number of generators of an )( in OH
i

-module 

Mi, and denote by dr  = )(dim rD V
r

 the dimension of vector space Vr over Dr. 

The dimension of a representation M = (Mi, Vr, jϕi, jψr) is the number 

 ∑∑
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+==
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)(dim µ  (3.13) 
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Definition 3.14. An O-species Ω is said to be of bounded representation type 

if the dimensions of its indecomposable finite dimensional representations have 

an upper bound. 

 

Corollary 3.15. An O-species Ω is of bounded representation type if and only 

if the tensor algebra T(Ω) is of bounded representation type. 

 

Proof. If Ω is an O-species of bounded representation type, then there exists N > 0 

such that dimM < N for any indecomposable finite dimensional representation M. 

Then for any finitely generated T(Ω)-module X we have µ(X) < N1, where N1 is 

some fixed number depending on N, i.e. T(Ω) is a ring of bounded representation 

type. The converse also holds: if T(Ω) is a ring of bounded representation type, 

then Ω is an O-species of bounded representation type. 

 

Corollary 3.16. Let Ω1 be a D-species, which is a subspecies of a (D, O)-species 

Ω. If Ω is of bounded representation type, then Ω1 is of finite type. 

 

Proof. Since Ω is of bounded representation type, each of its subspecies is of 

bounded representation type as well. So Ω1 is of bounded representation type, and, 

by corollary 3.15, its tensor algebra is of bounded representation type, as well. 

Since Ω1 is a D-species, its tensor algebra is an Artinian ring. So it is of finite rep-

resentation type, by [5]. Therefore, Ω1 is also of finite representation type. 

3. Conclusion 

In this paper we introduced O-species and the tensor algebras corresponding 

to them. These O-species are some generalizations of species first introduced by 

Gabriel in [1]. We consider the notion of a representation of an O-species. In this 

paper we prove that the category of all representations of O-species Ω and the cat-

egory of all right modules over a tensor algebra T(Ω) are naturally equivalent. 
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